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Early transcriptional effects of inflammatory
cytokines reveal highly redundant cytokine
networks
Juliana J. Lee1, Liang Yang1, Jonathan J. Kotzin2, Dughan Ahimovic3, Michael J. Bale3, Peter A. Nigrovic2, Steven Z. Josefowicz3,
Diane Mathis1,4, Christophe Benoist1,4, and Immunological Genome Project Consortium

Inflammatory cytokines are fundamental mediators of the organismal response to injury, infection, or other harmful stimuli.
To elucidate the early and mostly direct transcriptional signatures of inflammatory cytokines, we profiled all immunologic cell
types by RNAseq after systemic exposure to IL1β, IL6, and TNFα. Our results revealed a significant overlap in the responses,
with broad divergence between myeloid and lymphoid cells, but with very few cell-type-specific responses. Pathway and
motif analysis identified several main controllers (NF-κB, IRF8, and PU.1), but the largest portion of the response appears to be
mediated by MYC, which was also implicated in the response to γc cytokines. Indeed, inflammatory and γc cytokines elicited
surprisingly similar responses (∼50% overlap in NK cells). Significant overlap with interferon-induced responses was
observed, paradoxically in lymphoid but not myeloid cell types. These results point to a highly redundant cytokine network,
with intertwined effects between disparate cytokines and cell types.

Introduction
The immunologists and computational biologists of the Immu-
nological Genome (ImmGen) Project aim to generate an ex-
haustive definition of gene expression and regulatory networks
of the mouse immune system. Here, we charted the primary
transcriptional changes that result, in the major cell types of the
immune system, from in vivo exposure to major inflammatory
cytokines.

Inflammatory cytokines are pleiotropic signaling molecules
secreted by immunocytes in response to external stimuli such as
infections or toxins, or internal stimuli during sterile inflam-
mation (Dinarello, 2009; Rock et al., 2010; van Loo and Bertrand,
2023; Murakami et al., 2019). These cytokines mediate defense
mechanisms by coordinating communication between various
immunocytes and stromal components. Their production and
release trigger a cascade of events that promote inflammatory

responses through both paracrine and autocrine effects. This
leads to initiation of cell differentiation, proliferation, and
recruitment, as well as broader organismal changes, such as
fever or behavioral effects (Conti et al., 2004; Larson and Dunn,
2001). They also have more discrete effects on phenotypic
differentiation of immunocytes, like Th17 cells (Korn et al.,
2009). Dysregulation of IL6 signaling is implicated in many
chronic inflammatory conditions (e.g., rheumatoid arthritis, in-
flammatory bowel disease), autoimmune disorders, and cancers,
and they are the targets of some of the most effective im-
munotherapies developed over the past 30 years.

Themain inflammatory cytokines includemembers of the IL1
(Dinarello et al., 1974), IL6 (Hirano et al., 1986), and TNF families
(Carswell et al., 1975). Although their actions are mediated
by different families of receptors, these cytokines exhibit
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functional overlaps due to shared signaling mediators (e.g., NF-
κB and STAT transducers [Weber et al., 2010; Smale, 2010;
Hayden and Ghosh, 2014; Webster and Vucic, 2020; Guo et al.,
2024]), as illustrated in Fig. 1 A. Notably, inflammatory cyto-
kines regulate each other’s production and release, resulting in
interconnected signaling pathways (Oeckinghaus et al., 2011).

IL1β is initially synthesized as an intracellular inactive pre-
cursor and released in response to proinflammatory stimuli
(TLR ligands, inflammasome, and caspase activation) (Fields
et al., 2019). It activates cells by binding the IL1R1 receptor to-
gether with the IL1RAcP co-receptor (Dinarello, 2009). The IL1β:
IL1R1:IL1RAcP complex recruits MyD88, initiating a cascade of
proinflammatory signals mediated by oligomerized adapter
protein complexes, including IRAK4 and TRAF6, and ultimately
activates the NF-κB, JNK, and p38/MAPK pathways (Weber
et al., 2010). TNFα is also produced as a proprotein,
membrane-bound, and only released after cleavage by ADAM17,

which is induced by diverse signals like bacterial ligands, IL1β, or
cell activation. When TNFα binds its receptor as a homotrimer
(Kucka and Wajant, 2021), it recruits the TRADD/TRAF/RIP
adaptor complex, which then activates downstream NF-κB and
MAPK pathways (Hayden and Ghosh, 2014), as well as pro-
grammed cell death (van Loo and Bertrand, 2023).

IL6 represents yet another structural family (Tanaka et al., 2014).
A single protein chain, it binds IL6R together with the gp130 sig-
naling partner shared with other cytokines (Tanaka et al., 2014;
Rose-John et al., 2023). IL6 signaling is thought to primarily operate
via JAK1/2, and TYK2 adaptors that activate STAT transducers, es-
pecially STAT3, for direct transcriptional activation. IL6 also elicits
parallel activation of NF-κB, MAPK, and PI3K/Akt pathways,
generating some overlap with IL1- and TNF-induced signaling
(Oeckinghaus et al., 2011; Zegeye et al., 2018; Fan et al., 2013).

While inflammatory cytokines protect the host by activating
the immune system, their dysregulation leads to several chronic

Figure 1. Overview of early responses to IL1β, IL6, and TNFα. (A) Schematic of IL1β, IL6, and TNFα signaling pathways. Solid lines represent pathways
canonically considered to dominate the responses, dotted lines represent pathways considered more peripheral. Created with https://BioRender.com. (B)Mice
were injected systemically with inflammatory cytokines, the main immunocyte populations were sorted 2 h later and profiled by population RNAseq. Numbers
tally the upregulated and downregulated genes (FoldChange >2 [top] or <0.5 [bottom], P value <0.001). See Materials and methods for information on
replicates.
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inflammatory disorders and autoimmune diseases. Therefore,
understanding the events elicited by these cytokines across the
immune system is of distinct importance. Previous studies have
investigated the transcriptional consequences of exposure to
inflammatory cytokines in mixed populations or individual cell
types (Jura et al., 2008; Defois et al., 2023), but with frequent
emphasis on cells in culture or recurrent cell types (Jiang et al.,
2021). However, in vivo investigations using comparative ap-
proaches to analyze transcriptomic responses across diverse cell
types exposed to IL1β, IL6, and TNFα are incomplete.

Here, we purified and profiled immunocytes of the standard
“ImmGen 14-cell set” from mice treated systemically with IL1β,
IL6, and TNFα. Our findings reveal a large degree of redundancy
between these cytokines, with surprising overlap with re-
sponses elicited by cytokines of other families, and shared re-
sponses between cell types that diverged between more distant
myeloid or lymphoid populations.

Results
Overall landscape of responses to inflammatory cytokines
The study design followed that used in our previous study of
transcriptional signatures of γc cytokines. We determined the
response across all immunocyte lineages, as represented in the
ImmGen 14-cell set, which ranges frommast (MCs) to regulatory
T cells (Tregs), after i.v. injection of inflammatory cytokines
(eschewing confounders from tissue culture) and leaving cells in
their normal environment of inter-cellular signals. In line with
our previous determinations in this systematic profiling of cy-
tokine signatures in immunocytes, we continued to use popu-
lation profiling from carefully sorted cell populations with
ImmGen’s “ULI” (ultra-low input) RNA sequencing (RNAseq)
protocol, as opposed to single-cell RNAseq. Although it lacks
information at the single-cell level, population profiling yields
deep signatures, less confounded by the sparsity of single-cell
data and by the imbalanced representation of different cell types
(and their potentially ambiguous integration on 2D projections).

Inflammatory cytokines, components of innate response
pathways, elicit very fast responses (Cronkite and Strutt, 2018).
Thus, for the primary phase of the screen, cells were harvested
for profiling 2 h after injection, when primary responses should
dominate and indirect effects be comparatively limited. Mice
were injected with IL1β, IL6, or TNFα at non-lethal doses chosen
to match those commonly used in functional experiments.
Peritoneal cells and splenocytes were harvested 2 h later, and
cell populations were purified by flow double-sorting for ULI
RNAseq following standard ImmGen sorts (see Materials and
methods for gating strategies and population acronyms). We
noted that IL1β and TNFα treatment led to the rapid removal of
CD155 (CSF-1R) from the surface of monocytes, and we switched
to CX3CR1 as a sorting marker for monocytes (Fig. S1 A). In all,
185 RNAseq datasets passing quality control thresholds were
assembled in biological triplicates for all cell/cytokine combina-
tions (except IL1β in plasmacytoid dendritic cells [pDCs]). A
dedicated interface of ImmGen website (https://www.immgen.
org/Databrowser19/Cytokines.html) presents these results in an
interactive manner.

As illustrated in Fig. 1 B by the number of transcripts up- or
downregulated at an arbitrary threshold (FoldChange >2 and
t test on log-transformed P value <10−4), the scale of responses to
inflammatory cytokines differed between lineages: these cyto-
kines mostly acted upon myeloid cells, particularly neutrophils
(GNs), where they had the most extensive effects, affecting
200–2,000 transcripts (for comparison, similarly calculated ef-
fects of common-γ-chain (γc) cytokines were in the 50–800
range [Baysoy et al., 2023]). Responses were particularly narrow
in B cells (10-fold fewer than inmacrophages) and also relatively
modest in T lymphocytes. Throughout cell types, IL1β and TNFα
had comparatively similar effects, both generally fivefold
stronger than IL6.

The clustered heatmap of Fig. 2 A represents 2,331 transcripts
altered at P value <10−4 by one cytokine in at least one cell type
(every replicate is shown as a FoldChange versus themean of the
controls, emphasizing the robustness of the data). This synthetic
overview of these changes brings forth several major con-
clusions, which will be further detailed below: (1) There was
extremely high similarity between responses to IL1β and TNFα,
throughout all cell types. (2) Clusters of affected transcripts
were mostly shared between myeloid cells, with quantitative
shades, and few truly cell-type-specific effects, with the excep-
tion of Clusters 10 and 7, induced by all three cytokines in GNs,
and either unaffected (Cluster10) or even repressed (Cluster7)
elsewhere. (3) Only one cluster (Cluster6) was predominantly
induced in lymphoid cells, which otherwise tended to show
changes in the same clusters as myeloid cells, albeit weaker. This
similarity was particularly marked for natural killer (NK) cells,
reminiscent of notions that NK cells (and innate lymphoid cells
more generally) are somewhat an intermediate cell type be-
tween adaptive lymphocytes and innate myeloid cells (Bezman
et al., 2012). (4) Although one tends to consider responses to
cytokines as mainly inductive (via STAT or NF-κB activation),
transcript downregulation was extensive even at these early
times, numerically equivalent to upregulation, and mirroring
the cell/cytokine distribution (a paradox that we had noted
earlier for γc cytokines [Baysoy et al., 2023]).

As might be expected, genes induced by inflammatory cyto-
kines include a wide array of cellular functions, as revealed
by enrichment analysis. A large number of over-represented
pathways were found (544 BioCarta terms enriched at Padj
<10−2), with a diversity of functions exemplified in Fig. 2 B.
Enrichment in Hallmark pathways brought forth TNFα and IL6
signaling, comfortingly, but also revealed an overlap with sig-
naling pathways of other cytokine families, e.g., interferons
(IFNs), IL2, or TGFβ (Fig. 2 C), which we further investigate
below. In contrast, genes repressed by inflammatory cytokines
showed hardly any enrichment in particular pathways or gene
ontologies (Fig. 2 B). One might speculate that, unlike the in-
duction facet which turns up entire functional pathways, this
repression is quantitatively important to “clear out space” on
ribosomes but does not shut down entire cell functions.

A more discriminating analysis of the different gene clusters
defined in Fig. 2 A revealed clear partitions according to their
transcriptional control (Fig. 2 D) and functional characteristics.
From a regulatory standpoint, the different clusters formed a
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Figure 2. Overview of total early transcriptional profiles of immune cells in response to IL1β, IL6, and TNFα. Mice were injected systemically with
inflammatory cytokines, and the main immunocyte populations were sorted 2 h later and profiled by ultra-low input population RNAseq. See Materials and
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patchwork of enrichment for very distinct combinations of
transcription factor binding motifs. These included several of
the expected transcription factors (TFs), NF-κB, MYC, IRF, STAT
(Weber et al., 2010; Smale, 2010; Hayden and Ghosh, 2014;
Webster and Vucic, 2020; Guo et al., 2024), and CHD1 (Honma
et al., 2020; Zhao et al., 2020). MYC stood out most uniquely as
driving Cluster4, and its transcript was strongly induced in
myeloid cells, marginal zone B cells (MZB), and Treg (but not in
GNs). This involvement echoes the large representation of MYC
targets in response to γc cytokines (Sarosiek et al., 2010; Sinclair
et al., 2013; Villarino et al., 2022; Baysoy et al., 2023). Signaling
through NF-κB is expected to represent a major component of
the IL1β and TNFα-driven responses (Weber et al., 2010; Smale,
2010; Hayden and Ghosh, 2014; Webster and Vucic, 2020). NF-
κB–binding motifs were indeed present, perhaps more narrowly
than onemight have expected, with the over-representation of NF-
κB–binding sites in Clusters 1 and 9. Control of the former, which is
almost exclusively myeloid-specific, also involved the canonical
myeloid TFs IRF8 and PU.1, whose motifs were less represented in
regulatory regions of the more broadly induced Cluster9. Inter-
estingly, IRF8 appears dominant for Cluster6, one of the main re-
sponse clusters in T cells, but here associated with RUNX and
STAT. CHD1 is a chromatin remodeler that directly upregulates Il6
(Zhao et al., 2020), appears involved in regulating several clusters,
in particular Cluster11, and it is interesting to note that Il6 belongs
to the myeloid-specific Cluster11. Overall, the response to inflam-
matory cytokines thus seems to involve a combination of TFs.

Gene set enrichment analysis of the upregulated clusters
unveiled broad pathways (production of cytokines and chemo-
kines, metabolic processes, and response to stress) but each
cluster was also characterized by a functional bias (list and
statistics in Table S2). For instance, Cluster1 (264 transcripts) is
one of the strongly myeloid-dominant clusters, with divergent
effects of IL6 compared with IL1β and TNFα (especially in
monocytes). It is enriched in genes associated with innate pat-
tern recognition and includes Tnf itself along with several
members of the NF-κB transcription factor family members
(Rela, Relb, Nfkb1, and Nfkb2), suggesting a fast positive feedback
loop. Cluster4 (174 transcripts) is also myeloid-dominant, yet
mostly downregulated by IL1β and TNFα in GNs. This gene set is
highly enriched in post-transcriptional processes such as ribo-
some biogenesis or translational regulation. Cluster9 (151 tran-
scripts), on the other hand, is more ubiquitously induced by IL1β
and TNFα and includes many transcripts associated with cyto-
kine signaling (Il4ra, Il15ra, Jak3, Stat3, and Socs3).

Positive feed-forward of inflammatory cytokines
Inflammatory cytokines are known to partake in positive feed-
forward loops: cytokines induce their own transcripts, which

helps amplify fast responses by the innate immune system. It
was thus of interest to ask how these feed-forward elements are
distributed among immunological lineages. Indeed, TNFα and IL1β
reciprocally induced their transcripts inmostmyeloid cells, except for
pDCs, and GNs where Il1β transcripts were extremely abundant even
prior to treatment (Fig. 3A). Feed-forward inductionwas absent in all
lymphoid cell types, even for Tnf whose baseline expression levels
were similar in myeloid and lymphoid cells. Il6 transcripts were also
induced by IL1β and TNFα in most myeloid cells, but IL6 protein was
completely unable to induce the other inflammatory cytokines (Fig. 3
A), indicating a unidirectional spreading of the inflammatory re-
sponse, at least at this early point. More generally, inflammatory
cytokines induce a wide array of other chemokines and other cyto-
kines in myeloid cells but fewer in lymphoid cells, showing the im-
portance of basal states in allowing feed-forward responses to develop
(note that the opposite was true for γc cytokines, with their pre-
ponderant responses in lymphoid cells).

We also asked whether inflammatory cytokines upregulate
the expression of their receptors. This was generally not the case
(Fig. 3 B): except for slight induction of Il1r2, genes encoding IL6,
TNFα, and IL1 receptors were impervious to these inflammatory
cytokines. Thus, by inducing themselves but not their receptors,
inflammatory cytokines depart operationally from γc cytokines:
IL2 and IL4 do not induce themselves but strongly induce their
key receptors, IL2RA and IL4RA (Baysoy et al., 2023).

Chromatin landscape of genes responsive to IL1β
To determine whether these early transcriptional changes are
mirrored at the chromatin level, we analyzed changes in the
chromatin histone induced by IL1β using CUT&RUN (Skene
and Henikoff, 2017) datasets that we generated in the context
of another ImmGen program (https://www.immgen.org/
Databrowser19/Chromatin.html). Because of the nature of this
dataset, it was not possible to fully match treated and untreated
samples from the same organ, so we merged chromatin
CUT&RUN data from GNs of several organs from mice left un-
treated (spleen, bonemarrow, and blood) or treated with IL1β 3 h
prior to harvest (lung and peritoneal cavity). We reasoned that,
while some tissue-related patterns would be expected in the
data, tissue-specific effects would be partially averaged out by
the merging, and focusing the analysis on the vicinity of IL1β-
responsive genes would allow the main traits associated with the
response to IL1β to come through. The marks analyzed included
H3K4me3 (promoter), H3K4me1 (active enhancer), H3K27ac
(active enhancer), H3K27me3 (Polycomb-repressed chromatin),
and H3K36me3 (active gene body transcription), and samples
from male and female mice were used as replicates.

Normalized signal intensities from GN-specific peak atlas
were generated using Epic2 (Stovner and Sætrom, 2019) from

methods for information on replicates. (A) A clustered heatmap overview of 2,331 genes that respond in one or more cell types across IL1β, IL6, and TNFα.
(B) Gene ontology (GO) analysis (String) incorporating all up- or downregulated genes from A. Only a representative subset of the 76 ontologies passing Padj
<0.05 are shown for upregulated transcripts, but all are shown for downregulated genes. (C) Genes belonging to the main categories of enriched Gene
Ontologies within the upregulated transcripts of A. (D) Enrichment of TFs controlling responsive clusters was analyzed for each cluster from A using the
“ENCODE and ChEA Consensus TFs from ChIP-X” library from EnrichR. TF motifs yielding the 10 best “Combined Score” were included. Individual scores are
shown (full listing and significance metrics in Table S2). In some instances (Runx, IRF, and NF-κB), motifs were edited to the TF family name rather than the
individual member predicted by EnrichR.
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merged GN CUT&RUN bam files for each histone target, with
peak-gene assignment based on the nearest gene with ChIP-
seeker (Yu et al., 2015). The comparison revealed marked
changes in the vicinity of genes induced by IL1β for H3K4me3 in
control and IL1β-stimulated GNs (Fig. 4 A). These findings are in
agreement with previous observations (Markovics et al., 2011).
Other histone markers showed more limited (H3K27Ac) or no
changes (H3K4me1 and H3K27me3). For repressed genes, a more
modest decrease in H3K4me3 signals was observed, with es-
sentially no changes in other histones. Genomic plots centered
around highly induced genes, such as Cd14 and Socs3, corre-
spondingly showed a very strong increase in H3K4me3 at and
downstream from the promoter (Fig. 4 B, left two panels). There
was little change in the enhancer-associated marks. Together
with the more general scatterplots, these profiles suggest that
the early inductive response to IL1β primarily reflects action at
the level of the promoter, more than activation of distal en-
hancers. Changes in the distal enhancer after exposure to
cytokines have been reported (Ostuni et al., 2013), albeit in
different timeframes, and a detailed comparative analysis over
time would be of interest. For repressed genes, while most genes

(Atf3; Fig. 4 B) displayed no changes in histone marks, others
such as Trim65 (Fig. 4 B, far right) exhibited clear reductions in
H3K4me3. These patterns suggest that downregulation by in-
flammatory cytokines results from post-transcriptional changes
(i.e., mRNA degradation), but also some degree of transcriptional
turn-down, as we had previously suggested for γc cytokines
(Baysoy et al., 2023).

Cytokine specificity of inflammatory cytokine signatures
The heatmap of Fig. 2 A indicated a striking degree of similarity
between the signatures of TNFα and IL1β. With only mild
quantitative variation in their impact on most clusters, IL6 had
lesser but also overlapping effects. Heatmap representations can
be misleading and mask subtle divergence, so we compared the
responses more closely on FoldChange/FoldChange plots (Fig. 5).
In peritoneal macrophages (MF.PC), the response to IL1β and
TNFαwas virtually identical (Pearson R = 0.79), withmostly only
quantitative variation in the degree of induction. As detailed in
Fig. S1 B, these joint changes included Socs2, Ifn, Il1rn, and Vdr.
Only a few genes responded only to TNFα (i.e., F3, Tnfsf9, or Ccl5;
Fig. S1 B). TNFα and IL1β also had highly concordant effects in

Figure 3. Induction of transcripts encoding inflammatory cytokines and their receptors. Transcriptional response data, from Fig. 1, 2 h after in vivo
injection of vehicle (PBS, gray), IL1β (orange), IL6 (blue), and TNFα (red). (A and B) Transcript levels (arbitrary units) are shown for inflammatory cytokines (A)
and their receptors (B).
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follicular B cells (Bfo) and naive CD4+ T cells (T4n) (Fig. 5, top),
but more divergence was observed in GNs. A strong overlap
between IL1β and TNFα signatures was expected to some extent
since they both engage NF-κB signaling pathways.

Responses to IL6 also included components shared with IL1β
and TNFα but were generally more divergent (Pearson R versus
TNFα ranging from 0.1 to 0.52 in different cells) Transcripts
induced by TNFα and IL1β but not IL6 included the NF-κB family
(Rel, Relb, Nfkb2, and Nfkbia, Fig. S1 C), consistent with the com-
paratively limited role of NF-κB in IL6 signaling, as well as Irf1,
Cd274, Icosl, or Il12rb2. Gene sets induced by both IL6 and TNFα/
IL1β could be found inmany cells (e.g., Ccr5, Il18rap, Sgk1, or Igfbp4,

Fig. S1 C). Overall, these data indicate that inflammatory cytokines
elicit intrinsically similar responses. Indeed, a systematic search
for transcripts that could uniquely be induced by only one of these
cytokines across the set of cell types tested yielded only 30, 30, and
237 transcripts for IL1β, IL6, and TNFα, respectively.

Cell specificity of inflammatory cytokine signatures
A strong similarity between the responses of different im-
munocytes to inflammatory cytokines was obvious from the
shared clusters of Fig. 2 A, induced as well as repressed in all
myeloid cells, macrophages, DCs, and GNs, albeit with some
quantitative variation. The only exception to this widespread

Figure 4. Early chromatin changes around genes responsive to IL1β in neutrophils. Chromatin analysis was performed by CUT&RUN in neutrophils (GNs)
purified frommice at baseline or 3 h after IL1β treatment in vivo. (A) Scatterplots comparing normalized reads in peak signals between untreated GNs (summed
signals of GNs from bone marrow, spleen, blood), and IL1β-treated GNs (summed from GNs in lung and peritoneal cavity) samples, averaged between female
and male replicates. Peaks associated with the top 50 upregulated (red) and downregulated (blue) genes in GNs (from Fig. 2) are highlighted. (B) Repre-
sentative CUT&RUN chromatin tracks around IL1β-induced genes, Cd14 and Socs3, and IL1β-repressed genes, Atf3 and Trim65, for the major histone marks or
from non-specific rabbit IgG controls. FC, FoldChange.
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sharing of response between myeloid cells was in Cluster7, al-
most exclusively responsive in GNs (Fig. 2 A). Lymphoid cells
shared their own, more restricted, general patterns. This
widespread distribution echoed our prior observations after the
challenge with γc cytokines, where essentially no cell-type-
specific response could be detected at early times (Baysoy et al.,
2023). While this manuscript was in preparation, a broad
analysis of cytokine responses in vivo by single-cell RNAseq (Cui
et al., 2024) concluded that most cytokines induce highly cell-
type-specific responses. In particular, it was claimed that IL1β
induces distinct gene programs in almost every cell type. As il-
lustrated in Fig. S2, reanalysis of these data also supports our
conclusion of similar responses between cell types, the mis-
leading conclusions having resulted from scoring cell specificity
by non-parametric intersection of lists of responsive genes
called at a fixed statistical threshold, without considering actual
FoldChanges. It was important, however, to assess more directly
the cell specificity of the responses observed in the present data.
For a general overview, we first showed Jaccard indices of the
overlap between responses in different cell types (Fig. 6 A),
which confirmed the visual impression from Fig. 2 A. In the
volcano plots of Fig. 6 B, the signatures of IL1β treatment in
GATA6+ MF.PC (at FoldChange >2, P value <0.01) were com-
pletely biased in monocytes (>90% bias). A strong bias, albeit
less extreme, was found for responses to IL1β in NK and effector-
memory CD8+ T cells (T8em) (Fig. 6 B, right). For a broader
perspective, we plotted the responses to IL1β in MF.PC (x-axis)
versus several other cell types of the same mice (Fig. 6 C, top
row). Responses in other myeloid cells were highly related,
while the milder responses in lymphoid cells were less

correlated (except for NK cells, which clearly showed some
similarity to MF.PC). Conversely, the responses of T4n (Fig. 6 C,
bottom row) bore little similarity to those of GNs, bore a little
more similarity to those of DC8, even more to B or NK cells, and
were almost superimposable to those of Tregs. To generally
quantify the degree of cell specificity in these responses, we
simply calculated the number of responsive genes shared be-
tween any two cell types and those truly specific to one cell type
(i.e., not induced by >1.5-fold in any other cell; Table S3). For
IL1β, MCs and GNs exhibited 18% and 32% of specific responses,
but for all other cell types, this proportion was very low (3–13%).

These large similarities notwithstanding, it is important to
point out that there are fine but true differences between re-
sponses of closely related cells, and these may be functionally
relevant. For instance, the “closeup” on responses to IL1β in T4n
and Treg cells (Fig. 6 D) reveals that Dusp4 or Fos are only in-
duced in T4n cells but not in Tregs (Jun is induced in both), while
Il10 or Il1rl1 (encodes the ST2 receptor for IL33) only responds in
Tregs. The latter is suggestive given the role of ST2 in Treg
subsets with proreparative potential.

Thus, inflammatory cytokines induce very few cell-type-
specific responses, but there is a degree of fine specificity of high
functional relevance that can be missed by agglomerative
analyses.

Overlaps between inflammatory and other
cytokine signatures
Redundancy between cytokine-elicited responses has long been
recognized (Paul, 1989; Ozaki and Leonard, 2002), most imme-
diately because cytokines within a family share receptor or

Figure 5. Overlapping responses to IL1β, IL6, and TNFα treatments. FoldChange/FoldChange plots comparing responses TNFα (x-axis), IL1β (y-axis; top
row), and IL6 (y-axis; bottom) in peritoneal macrophages (MF.PC), monocytes (Mo), follicular B cells (Bfo), and naive CD4+ T cells (CD4+ nai(T4n). Genes that
pass P value <0.01 significance in only one response are highlighted in black or green, and those that pass P value <0.01 in both are highlighted in orange.
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Figure 6. Cell-type specificity of responses. (A) Sharing of transcripts responsive to TNFa, IL6, or IL1b, computed as the Jaccard index between signature
lists (at a FoldChange >1.5 threshold), ×100 for clarity. (B) Paired volcano plots comparing responses to IL1β in peritoneal macrophages (MF.PC) versus
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signaling components, as is the case for γc cytokines, or for IL1β
and TNFα. Aside from these immediate causes of overlap, acti-
vating secondary signal transducers can lead to unexpected
similarities, as can the induction of shared negative feedback
molecules of the Socs family. For instance, we described the
crosstalk between signatures of Type-1 interferon and γc cyto-
kines, likely tied to the activation of STAT1 by the latter. This
overlap showed cell specificity, present in most cell types, but
missing in NK cells (Baysoy et al., 2023). We thus asked whether
similarities could be found between the signatures of inflam-
matory cytokines and of γc cytokines. Indeed, a simple count of
transcripts responsive to IL1β or TNFα that were also respon-
sive, in the same cell types, to each of the γc cytokines revealed
an overlap involving dozens to hundreds of transcripts (Fig. 7 A).
As a proportion, this similarity was most marked in NK cells
treated with IL2 or IL15, involving almost half of the response to
inflammatory cytokines (Fig. 7 A, right). A FoldChange com-
parison revealed a global correlation between the two responses
(Fig. 7 B). For IL2, the key trophic cytokine of Treg cells, we
found that >50% of its signature genes were shifted to some
degree by IL1β or IL6 (Fig. 7 C).

This overlap between γc and inflammatory cytokines in-
cluded a significant contribution of MYC-dependent transcripts,
as illustrated in Fig. 7 D for IL4 and TNFα in monocytes, sug-
gesting that several co-regulated clusters might be shared. This
was indeed the case, as Cluster4 (defined in Fig. 2 A) included
many of the transcripts of the γc-induced “Cluster5” defined in
Baysoy et al. (2023) (Fig. 7 E). Similarly, Cluster6, which is
preferentially induced in lymphoid cells, overlapped with γc-
induced “Cluster6.” The major downregulated clusters (3, 7,
and 8) also coincided with γc-repressed Clusters 11 and 12. Thus,
the intersection between responses to inflammatory and γc cy-
tokines does not merely include scattered transcripts and co-
regulated gene modules, consistent with the notion that they
share signaling pathways. This point was reinforced by Gene
Ontology analysis, which showed that the intersection of tran-
scripts upregulated by γc and inflammatory cytokines (all
clusters) includes distinct and well-defined functional clusters
(Fig. 7 F and Table S1 D). Most notable is a tight group of ribo-
some biogenesis transcripts, along with many generic changes
related to the activation of transcription and translation. Thus, a
common result of inflammatory and γc cytokines act to rapidly
prepare immunocytes for major biosynthetic changes.

The analysis of IFN-sensitive genes (ISG) after TNFα stimu-
lation with inflammatory cytokines proved paradoxical: it was
only in the generally less-responsive lymphoid cells that the core
ISG signature was fully induced, and not or much less consis-
tently in myeloid cells (Fig. 8 A). The distribution of ISG in-
duction was essentially similar for IL1β and only weak for IL6.

The cell-specific overlap rules out an indirect effect of IFN that
would be released after TNFα and suggests that signaling from
TNFα and IL1β connects to the main STAT1/STAT2 signaling
pathways in lymphocytes, but not in myeloid cells. We previ-
ously used network inference to dissect core ISG into clusters
that are controlled by different groups of TFs (Mostafavi et al.,
2016): a major “Cluster3” controlled by canonical STAT and IRF
factors, and several smaller clusters controlled by other regu-
lators (reprinted in Fig. 8 B). In response to TNFα, ISG cluster3
was strongly induced in lymphocytes but not in myeloid cells
(exemplified by MF.PC and T4n in Fig. 8 C), Cluster5 responded
in both, and other ISG clusters seemed non-responsive any-
where. Thus, the overlap in responses to different cytokines
shows baroque intricacy in relation to the diverse signaling
modules that are cross-activated in one cell type but not
the other.

Temporal evolution of responses to inflammatory cytokines
To focus on the immediate and mostly direct consequences of
cytokine action, the data above depicted very early responses to
inflammatory cytokines. On the other hand, it was of interest to
follow the temporal dynamics of the effects observed at early
times and ask whether later-appearing responses were elicited
by the administration. We thus conducted a time-course ex-
periment, purifying cells for RNAseq as above, at time points
ranging from 2 to 24 h after systemic injection as above. Because
running a time course on all cell types and the three cytokines
would be prohibitive, we limited this survey to TNFα and splenic
monocytes and MF.PC, those cell types with the strongest early
responses. The results showed that the response dominated
2–4 h after injection (somewhat earlier for MF.PC than for
monocytes), followed by attenuation by 8 h and further dimin-
ishment by 24 h (Fig. 9 A; note that the actual numbers are lower
than in Fig. 1 B because of lower statistical power from having
only two replicates). When these responses were aligned to the
genes and clusters of the early response (2 h, ordered per Fig. 2
A), many persisted to the 4 h time point, decreased at 8 h, and
finally resolved at 24 h. Indeed, the “amplifying induction” of
inflammatory cytokines themselves followed that trajectory
(Fig. 9 C). However, broader examination by cumulating tran-
scripts induced at any one time point highlighted clusters of
transcripts that persisted longer or that only appeared after 8 h
(Fig. 9 D). Secondarily unfolding responses are common inmany
response systems, but perhaps less expected for inflammatory
cytokines, which are thought to represent rapidly deployed
responses to innate immune system triggers. These late-
responsive transcripts were enriched in RNA metabolism, in-
cluding several associated with the cell cycle, with enrichment
in motifs for E2F factors (enrichR, hypergeometric Padj <10−10).

monocytes (Mo) (left) or natural killer (NK) cells versus CD8+ T cells (T8em) (right). Genes that meet FoldChange >2 or <0.5 with a P value <0.01 in MF.PC are
highlighted in red or blue on the Mo plot; the number of genes with FoldChange <1 or >1 is shown in the corresponding quadrant, denoting the biased
distribution (and the same for NK and T8em). (C) Top row: FoldChange/FoldChange plots comparing responses to TNFα in naive CD4+ T cells (T4n) (all x-axes)
versus other cell types on the y-axis: neutrophils (GN), Mo, CD8+ dendritic cells (DC8), follicular B cells (Bfo), NK, and regulatory T cells (Tregs). Bottom row:
same comparisons versus MF.PC on the x-axis. (D) FoldChange/FoldChange plot comparing effects of IL1β in T4n and in Tregs. Color-coded by P value as per
Fig. 5.
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Figure 7. Overlap between responses to inflammatory and γc cytokines. (A) Simple counting of overlap: tables at left show, for each cell type, the raw
number of genes with FoldChange >2 and P value <0.01 (after either IL1β or TNFα treatment, data from Fig. 1) and are also induced by greater than twofold by
one of the γc cytokines (bottom tables, same for repressed transcripts). The table in right have the same values, as the percentage of IL1β/TNFα affected genes.
(B) FoldChange/FoldChange plot comparing effects of TNFα and IL2 in natural killer (NK) cells. (C) FoldChange/FoldChange plot of the effects of IL1β and IL6 in
regulatory T cells (Tregs). Transcripts induced or repressed by IL2 in Tregs are highlighted in orange and blue, respectively. (D) FoldChange/FoldChange plot of
the effects of IL4 and TNFα in monocytes (Mo). Myc target genes (MSigDB Hallmark) are highlighted in red. (E) Heatmap comparison of responses to
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In terms of cell specificity, the high degree of similarity be-
tween early responses in monocytes and MF.PC tended to dif-
fuse somewhat at later times, with an interesting discordance
for some cell-cycle associated transcripts, induced in mono-
cytes but repressed in macrophages (Fig. 9 E).

Discussion
In the context of the systematic determination of cytokine sig-
natures by the ImmGen consortium, this work provides a
valuable compendium of the impact of the key inflammatory
cytokines across all lineages of the mouse immune system. Some
of the results conformed to expectations, such as the predomi-
nantly myeloid-centric distribution of the response and the
feed-forward loops induced reciprocally by TNFα and IL1β.
However, the results also brought several surprising aspects,
leading to some reconsideration of the interconnectivity of cy-
tokine networks.

The first surprise was the extreme similarity of early tran-
scriptional responses elicited by TNFα and IL1β. These two cy-
tokines belong to very different structural families, as do their
receptors, and are secreted very differently. They are thera-
peutic targets of blocking antibodies in mostly different disease
indications and are generally considered complementary yet
different players in inflammatory responses. Yet the target
transcripts they elicited were extremely similar, in bothmyeloid
and lymphoid cells (Fig. 2 A and Fig. 5), as were the most
strongly responding cell types. Some overlap was expected, as
they both signal strongly through the NF-κB andMAPK cascades
(Weber et al., 2010; Smale, 2010; Hayden and Ghosh, 2014;
Webster and Vucic, 2020; Guo et al., 2024), but superimposition
to such a degree was unexpected. Their early transcriptional
signatures being so similar implies that the different biologies of
TNFα and IL1β result from differences in availability (prefer-
ential release in different organismal contexts, or at different
times, of inflammation) rather than of effects.

We should mention one caveat here: since TNFα and IL1β
induce each other, this cross-induction may have contributed in
part to the overlapping signatures. However, the same cross-
induction would apply to normal responses in vivo. In parallel
experiments, we similarly profiled immunocyte transcriptomes
2 h after LPS injection: those responses were highly similar to
those provoked by TNFα and IL1β, Thus, there appears to be a
stereotypical response to many innate immune triggers. One
might consider TNFα and IL1β as endogenous endotoxins of sorts.

Second, motif enrichment analysis in the regulatory regions
of the different response clusters suggested that NF-κB may not
be as dominant a signaling conduit as often represented (Weber
et al., 2010; Smale, 2010; Hayden and Ghosh, 2014; Webster and
Vucic, 2020; Guo et al., 2024). Certainly, NF-κB appeared as the
dominant TF controlling the induction of Clusters 1 and 9, each
time in association with different TFs. But NF-κB motifs were

conspicuously absent from other response clusters, which were
instead dominated by other TFs (MYC, IRF8, STAT, and CHD1).
MYC, the deep cellular reprogramming that it controls, was
likely activated by the MAPK cascade known to be excited by
both TNFα and IL1β. MYC activity can be induced by phospho-
rylation (via ERK) and by stimulated transcription. Indeed, its
expression was also strongly induced by IL1β and TNFα. An
involvement of PU.1 in myeloid cells is plausible as it has been
associated with IL1 signaling (Marecki et al., 2001; Pietras et al.,
2016). IRF8 were presumably brought into play by post-
translational modification, as it was not appreciably induced
by any cytokine. Overall, the early responses to inflammatory
cytokines appeared to involve an interlaced patchwork of tran-
scriptional controllers.

Also surprisingly, IL6 did not induce a clear response cluster
of its own, instead mostly a qualitatively and quantitatively re-
duced component of the response to TNFα and IL1β. There is
precedent for such similar effects, like the ability of IL6 and IL1β
to induce IL17-producing T cells. Because IL6 belongs to another
structural family, signals through a gp130-coupled receptor, and
has some unique functions in the immune system (e.g., final
maturation of B cells into plasma cells), onemight have expected
distinct response clusters unique to IL6. These were not ap-
parent in any cell type, however. It is possible that biological
consequences specific to IL6 map to only a very small set of
genes: the sharing of a majority of signature genes does not
preclude fine specificity linked to a few outlier targets.

Third, there was very little cell-type specificity in the re-
sponses (Figs. 2 and 6). When taken globally, large differences
were present between the main branches of the immune system
(e.g., between myeloid and lymphoid cells, Fig. 6 C), but re-
sponses were very similar within classes of cells (e.g., between
CD4+ and CD8+ T cell lineages, or between macrophages and
monocytes). However, even when the overall signatures were
quasi-identical, it was also possible to find isolated but func-
tionally significant differences: Il10 was only induced by IL1β in
Treg but not in CD4+ T cells (Fig. 6 D). Thus, cell specificity needs
to be considered both at the level of overall signatures and of the
fine-grained detail of unique response.

A final surprise was the extensive overlap between sig-
natures of inflammatory cytokines and those stimulated by
other cytokines, in particular γc cytokines. γc cytokines are
mostly involved in trophic support and differentiation and be-
long to different chapters of cytokine textbooks. Yet, almost 50%
overlap was observed in some cells when compared with rough
thresholds (Fig. 7 A) and were even more aligned when re-
sponses were compared in a more sensitive fashion (Fig. 7, B and
C). This was particularly paradoxical for IL4, which is generally
considered an anti-inflammatory cytokine. Some of the overlap
could be ascribed to shared response modules (Fig. 7 E), in
particular the MYC-dependent cluster (Fig. 7 F). The latter
suggests that both classes of cytokines prepare cells for

inflammatory and γc cytokines. Genes and clustering are as selected and clustered in Fig. 1 B (reproduced at left for comparison). The membership of these
genes among γc response clusters is shown in the right half (clusters from Baysoy et al. [2023]), upregulated clusters in red, downregulated clusters in blue).
(F) String database representation of all transcripts shared between responses to γc and inflammatory cytokines, color-coded by Gene Ontology as indicated.
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Figure 8. Overlap between responses to Type-I interferon and inflammatory cytokines. (A) Interferon signature genes are highlighted in red on volcano
plots depicting responses to TNFα in a representative subset of cell types. The numbers of ISG up- or downregulated are shown, with the chi square P value of
the distribution (−log10). (B) ISG regulatory network, depicting the control of individual ISGs (in columns) by TFs (in row). Clusters 1–5 group ISGs with different
regulatory modes, which also correspond to different functional groups (reprinted fromMostafavi et al. [2016]). (C) Genes from each of the clusters defined in
B are highlighted on volcano plots of peritoneal macrophages (MF.PC) (top row) and naive CD4+ T cells (T4n) (bottom) treated with IL1β.
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Figure 9. Temporal evolution of response to TNFα. Mice were injected i.v. with TNFα, and splenic monocytes (Mo) and peritoneal macrophages (MF.PC)
were profiled by population RNAseq at different times. Two mice were pooled for each biological replicate, for two biological replicates per condition.
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reprogramming by activating generic cellular functions like
transcription and resetting translation with a strong increase in
ribosomes. The overlap with IFN signature genes mirrored our
previous observations (Baysoy et al., 2023), which we surmise
operates via STAT1/2 (IFN transcripts were not induced). But,
we remain baffled by the lineage specificity of this overlap,
which was mostly restricted to lymphoid cells that were oth-
erwise low responders to inflammatory cytokines. From a
functional standpoint, ISGs provide a first line of antiviral de-
fense, so why would inflammatory cytokines induce them in
only T or B lymphocytes?

Overall, these results paint a picture of a multiply redundant
cytokine network. Rather than a sharper vision in which cyto-
kines have discrete and cell-specific actions with well-defined
immunological consequences, cytokines of different classes can
activate the same response modules, and those responses oper-
ate similarly in different cell types. This core organization of
genomic responses to inflammatory cytokines that is observed
here will be further tuned by interactions and modifications at
the protein level and by differences in the accessibility to cyto-
kines imposed by cellular architecture.

Materials and methods
Mice and cytokine treatments
6–8-wk-old C57BL/6Jmice obtained from the Jackson Laboratory
were housed in specific pathogen–free conditions. IL1β (Cat#
575102; BioLegend, 5 µg), IL6 (Cat# 575702; BioLegend, 5 µg),
and TNFα (Cat# 575202; BioLegend, 5 µg) were injected i.v. in
120 µl PBS. Dosage choices were guided by existing literature
(Ramadoss et al., 2009; Chai et al., 1996; Putoczki et al., 2013;
Libert et al., 1990; Biesmans et al., 2015). For LPS treatment, 1 ng
E. coli LPS O55:B5 (cat.#L2880; Sigma Aldrich) was injected i.v.
in 120 μl PBS. All animal experimentation was performed under
protocols approved by the Harvard Medical School Institutional
Animal Care and Use Committee, protocol IS00001257.

Cell preparation and sorting
Cells from two mice were pooled for each biological replicate,
three biological replicates were sorted for cytokine treatments,
and five for the PBS control, unless indicated otherwise. Mice
were euthanized at the specified time point after injection, fol-
lowed by cell preparation per ImmGen standard operating pro-
cedure (https://www.immgen.org), identified as MC (mast cell,
sorted as CD45+[CD11b−CD11c−][CD19−CD4−CD8−]CD117+FcEr1a+),
GN (neutrophil, sorted as TCRB−B220−Ly6G+), MF.PC/MFpc
(peritoneal macrophage, sorted as ICAM2+F4/80), MF.RP/MFrp
(red pulp macrophage, sorted as TCRB−MHCIIint−F4/80hi), Mo
(monocyte, sorted as TCRB−CX3CR1+Ly6C+), DC8 (CD8+ DC,
sorted as TCRB−CD11chiCD8a+), pDC (plasmacytoid DC, sorted as

TCRB−CD11cintB220+SiglecH+), Bfo (follicular B cell, sorted as
CD19+TCRB−CD93−CD23+CD43−CD5−), MZB (marginal zone
B cell, sorted as CD19+TCRB−CD93−CD23−CD21hi), NK (natural
killer cell, sorted as CD19−CD8−TER119−GR1−TCRB−NK1.1+),
Tgd (γδ T cell, sorted as CD19−CD8−TER119−GR1−TCRB−

TCRgd+), T8em (CD8+ effector-memory T cell, sorted as
CD19−TCRB+CD4−CD8+CD62−), T4n (CD4+ naı̈ve T cell, sorted as
CD19−TCRB+CD4+CD8−CD62Lhi), Treg (regulatory T cell, sorted
as CD19−CD8−TER119−GR1−TCRB+CD4+CD25hi). Peritoneal cells
(MF.PC, MC) were collected by injecting 10 ml medium (Phenol
red-free DMEM, 2% FCS, 0.1% azide, and 10 mMHEPES, pH 7.9)
peritoneally and subsequent collection. Spleens were homoge-
nized through a 100-µm filter, and red blood cells were lysed in
AKC lysing buffer at a ratio of 1 ml per spleen. The resuspended
cell pellets were stained as per the standard 14-cell set protocol
(https://www.immgen.org), except for CD115, which showed a
downregulation in response to IL1β and TNFα treatments and was
replaced by CX3CR1 to define monocytes (Fig. S1 A). 1,000 cells
were double-sorted on a BD Aria II sorter into 1.5 ml DNA LoBind
tubes containing 5 μl TCL lysis buffer (QIAGEN) supplemented to
1% vol/vol β-mercaptoethanol. Sorted sampleswere kept on ice for
5 min, centrifuged, and quick-frozen on dry ice.

RNAseq library preparation, sequencing, and data processing
RNAseq was conducted in accordance with the standard Imm-
Gen low-input protocol at the Broad Institute, as detailed pre-
viously (Picelli et al., 2013, 2014). In summary, total RNA
was purified using a 2.2X RNA-SPRI bead cleanup, and poly-
adenylated mRNA was selected using an anchored 39 reverse
transcription primer (59-AAGCAGTGGTATCAACGCAGAGTA
CT30VN-39) (IDT). The purified RNA was converted into cDNA
through reverse transcription in a limited polymerase chain re-
action (PCR) amplification of first-strand cDNA. Then, the first-
strand cDNA was tagmented by Tn5-transposon to add adapter
sequences, following the Nextera XT DNA Library Preparation Kit
(Illumina). Libraries underwent PCR amplification for 18 cycles
with Illumina P7 and P5 index adapters, were pooled, and un-
derwent a 0.9X SPRI clean up. Paired-end sequencing was per-
formed on an Illumina NextSeq500 using 2 × 38 bp reads.

FASTQ reads were preprocessed and filtered as previously
described (Baysoy et al., 2023). Briefly, reads were aligned to the
mouse genome (GRCm38/mm10 primary assembly and col-
lapsed to one transcript per gene based on GENCODE gene
annotations vM25; https://www.gencodegenes.org/mouse/
release_M25.html) with STAR 2.7.3a (Dobin et al., 2013). Ribo-
somal RNA gene annotations were removed, and gene-level
quantification was calculated by featureCounts from the Sub-
read package. Then, reads were normalized using the standard
median ratio method in DESeq2 from Bioconductor (Love et al.,
2014) to a final range between 1 and 450,000. Sample RNA

(A) Overview count of upregulated and downregulated genes (FoldChange >2 [top] and <0.5 [bottom], with nominal P value <0.01). (B) Heatmap of the
response to TNFα, with genes arranged in the same order as Fig. 1 B. (C) Quantification of normalized gene counts of inflammatory cytokine transcripts (Il1a,
IL1β, Il6, and TNFα) in Mo and MF.PC during the course of response to TNFα (PBS-injected controls sampled at 24 h). (D) Clustered heatmap of 944 genes for
Mo (left) and 1,079 genes for MF.PC (right) (FoldChange >2 [up] or <0.5 [down], and P value <0.01 in at least one time point for each cell type). (E) FoldChange/
FoldChange plot comparing the effects of TNFα in Mo (x-axis) and MF.PC (y-axis). G2/M signature genes are highlighted in purple.
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transcript integrity (TIN) scores were calculated using RSeQC
2.6.4 (Wang et al., 2016). After normalization, samples with a TIN
score below 45, low maximum correlation coefficients (<0.9) be-
tween biological replicates, <8,000 mapped genes, and <1 million
uniquely mapped reads were excluded. Additionally, genes with
<10 aligned reads and a coefficient of variation exceeding 0.3 were
excluded from further analysis. The data generated in this study
are available in the GEO database under the accession number
GSE239946.

Computational analysis of ULI RNAseq data
Selection of total expressed genes
To avoid noise created by genes with very low expression, ro-
bustly expressed genes were chosen as outlined in Baysoy et al.
(2023). Briefly, for all cell types, genes with an expression level
>20 in at least one treatment were retained. Some genes yielded
intrinsically high variance even in untreated datasets. These
“noisy” genes were removed from consideration (on a per-cell-
type basis) if their coefficient of variation in that cell was >1,
leaving a total of 16,195 genes for further analyses (Table S1, A
and B). FoldChange and t test P values (computed on log-
transformed data) were determined for each one of these
genes in each cytokine treatment relative to PBS controls. For
gene–cell pairs that did not pass the expression level or noise
criteria, FoldChanges were set to 1 and −log10(P value) to zero.

Selection of individual cytokine/cell signatures
For robustness, while leveraging the power of confirmatory
responses in different cells or different cytokines, signature
genes were included in a given cytokine/cell-type pair if (1)
(FoldChange >1.8 and t test −log10[P value] >3 [nominal]) or (2)
(FoldChange >1.5 and t test −log10[P value] >2) if the same gene
showed (FoldChange >3 and −log10[P value] >4) in another cy-
tokine/cell combination (and the inverse for downregulated
genes). Note that these signature tables include all genes re-
sponsive in at least one of the cell types, but these genes are not
necessarily responsive in all cell types (Table S3).

Cluster analysis
For a comprehensive cytokine comparison, transcripts with a
cytokine/PBS t test P value <10−4, in at least one cytokine/cell-type
pair, were selected. Subsequently, 2,331 genes were selected and
grouped into 14 K-means clusters using Morpheus (https://
software.broadinstitute.org/morpheus) (Table S1 C). Ontology/
pathway and TF motif enrichment analyses (hypergeometric
tests, Benjamini-Hochberg correction) were performed in STRING
(https://string-db.org) (Szklarczyk et al., 2019) and EnrichR
(https://maayanlab.cloud/Enrichr/) (Xie et al., 2021) (computed
scores and adjusted metrics of variance listed in Table S2).

Overlapping responses in different cells were quantitated by
computing the Jaccard index (length[intersect]/length[union])
between signature gene sets at a threshold FoldChange of 1.5
(0.66 for repressed genes).

External signature sets
γc cytokine signature gene sets were retrieved from the Imm-
Gen website (Baysoy et al., 2023). Interferon signature genes

were retrieved from the pan-immunocyte IFN responses
(Mostafavi et al., 2016). Hallmark MYC genes were extracted
from the Molecular Signatures database (“HALLMARK_MYC_
TARGETS_V1” and “HALLMARK_MYC_TARGETS_V2” gene sets
obtained from https://www.gsea-msigdb.org/) (Liberzon et al.,
2015), and NF-κB target genes were retrieved from MotifMap
(https://motifmap-rna.ics.uci.edu/) (Xie et al., 2009). Lastly, cell
cycle signature genes were retrieved from Dominguez et al.
(2016).

Overlap with γc- and interferon-responsive genes
For the rough counts table of Fig. 7 A, we simply counted, on a
per cell-type basis, the number of transcripts with FoldChanges
>2 and nominal P value <0.01 after either IL1β of TNFα treat-
ment (same data as in Fig. 1 B and Fig. 2 A) and also >2 after 2 h
in vivo treatment with one of the γc cytokines, with no con-
ditions on P values (data from Baysoy et al. [2023]).

Reanalysis of published IL1b and Il2 single-cell data
Data from single-cell RNAseq profiling of cytokine responses
(IL2 and IL1b) (Cui et al., 2024) were obtained from the authors
as pseudo-bulk tables with per-gene reads-per-10K expression
values, mean FoldChange, and adjusted P value between cytokine-
treated and control cells. These values were used without further
modification in Fig. S2, matching with the present data via Gen-
eSymbol annotation. Responsive genes attributed as cell specific in
Fig. 2 of Cui et al. (2024) were extracted from Table S4 from
that paper.

Low cell input CUT&RUN
CUT&RUN data were prepared and generated in the context of a
broad ImmGen program to analyze the histone code across all
immunological lineages in (B6xCast)F1 mice, treating samples
from male and female mice as replicates, following a previously
reported protocol (Baysoy et al., 2023). GNs (10,000 per reac-
tion) from untreated or IL1β-treated mice were sorted into 2X
Nuclei Extraction (NE) buffer (40 mMHEPES, 20 mMKCl, 0.2%
Triton X-100, 40% Glycerol, 2 mM DTT, 1 mM Spermidine, 2X
Roche Complete Protease Inhibitor [#11873580001; Millipore
Sigma], freshly supplemented to 2X KDAC inhibitor cocktail [2
µM trichostatin A 1 mM sodium butyrate, 1 mM nicotinamide in
70% DMSO]), diluted to a final concentration of 1X. Samples
were slow-frozen in isopropanol at −80°C and processed in
batch mode for CUT&RUN. Upon thawing, samples were diluted
to 105 cells/ml in 1X NE Buffer and a mixture of 10 μl of activated
Concanavalin A (ConA) beads, 2 μl of 1:50 (vol/vol) SNAP-
CUTANA K-MetStat Panel, and 0.5 μg of primary antibody
(rabbit IgG [13-0042; EpiCypher; Lot 20335004-04], H3K4me1
[701763; Thermo Fisher Scientific; Lot 2135869], H3K4me3 [13-
0041; EpiCypher; Lot 210760004-01], H3K27me3 [MA5-11198;
Thermo Fisher Scientific; Lot VL3152691], H3K36me3 [ab9050;
Abcam; Lot GR3386101-1], H3K27ac [8173S; CST; Lot 8], and H3.3
[91191; ActiveMotif; Lot 25820004]) was added per reaction (104

cells per target reaction) and incubated overnight.
ConA beads were then washed twice in 250 μl Digitonin

Buffer (20 mM pH 7.5 HEPES, 150 mM NaCl, 0.5 mM Spermi-
dine, 1X Roche Complete mini, 0.01% digitonin), incubated in
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5 μl CUTANA pAG-MNase (20X) in 50 μl of Digitonin Buffer,
washed twice again in 250 μl Digitonin Buffer, and resuspended
in 50 μl Digitonin Buffer. MNase activity was activated with the
addition of 2 mM CaCl2 per reaction for chromatin digestion for
2 h at 4°C and terminated by adding 33 μl of High Salt Stop
Buffer (750 mMNaCl, 26.4 mM EDTA, 5.28 mM EGTA, 66 μg/ml
RNase A, and 66 μg/ml Glycogen). 20 pg CUTANA E. coli Spike-
in DNA (18-1401; EpiCypher) was added per sample for experi-
mental normalization. CUT&RUN-enriched DNA was released
from ConA beads after a 10-min incubation at 37°C and cleaned
up using 2:1 (Bead:DNA) ratio of Serapure beads. Libraries were
then prepared using a CUTANA CUT&RUN Library Prep Kit
(#14-1001; EpiCypher) and sequenced on Illumina NovaSeq
6000 SP (paired-end 2 × 75 bp read). All steps were optimized
and performed on Tecan Freedom EVO robotics platforms with
gentle rocking for incubation steps and magnetic capture for
medium exchange/washing steps.

Fastq data were processed with the following pipeline: reads
were adaptor-trimmed using Trim Galore v0.6.6 and aligned to
C57BL/6J and Cast reference genome and pseudogenome se-
quences in parallel (https://csbio.unc.edu/CCstatus/index.py)
using Bowtie2 v.2.3.4.3 with parameters -X 1000 -I 10 --very-
sensitive-local --no-mixed --no-discordant --phred33. After
converting the genomic coordinates of the aligned reads to
mm10 coordinates, bam files containing allele-specific and non-
allele-specific reads were merged for this study. Unmapped,
mitochondrial, and duplicated reads were removed with SAM-
Tools view and Picard MarkDuplicates, and reads overlapping
with the ENCODE blacklist were filtered using BEDTools inter-
sect. GN-lineage specific peaks were called using Epic2 (SICER
implementation) (Stovner and Sætrom, 2019) with target-
specific width and gap parameters (K4me3: -bin 200 -g 2,
K4me1 and K27ac: -bin 200 -g 3 and K27me3: -bin 500 -g 10)
using merged bam files of appropriate samples. These peak sets
were then used to create a final GN-specific peak atlas using IDR.
Reads in the peak data matrix were generated using deepTools
multiBamSummary and normalized by counts per million. Peak
annotation was performed with ChIPseeker (Yu et al., 2015) and
GenomicRanges (Lawrence et al., 2013) packages in R. First, the
genomic coordinates of the peaks were processed using Ge-
nomicRanges and then peaks were annotated with ChIPseeker by
mapping their genomic location to the nearest genes in a refer-
ence genome (TxDb.Mmusculus.UCSC.mm10.knownGene, the
Mus musculus genome assembly, mm10, from the UCSC Genome
Browser) by identifying the closest transcriptional start sites to
each peak. Genome coverage tracks were generated using deep-
Tools bamCoverage with parameters --binSize 10 --normal-
izeUsing CPM --ignoreDuplicates --extendReads --smoothLength
50 and visualized using IGV v2.17.4.

Online supplemental material
Fig. S1 shows the downregulation of CD115 in splenic monocytes
in response to IL-1β (A) and FoldChange/FoldChange analysis of
inflammatory cytokine-unique genes inMF.PC (B and C) and T4n.
Fig. S2 shows a reanalysis of single-cell RNAseq data from Cui
et al. (2024) concluding that immune cell types exhibit similar
transcriptional responses when treated with IL1β and IL2. Table S1

shows a list of Log2 FoldChange values (A and C) and P values (B)
of induced genes in immunocytes in response to IL1β, IL6, and
TNFα. Genes overlapping with γc-induced genes (Baysoy et al.,
2023) are shown in Table S1 D. Log2 FoldChange values of TNFα-
responsive time-course genes of splenic monocytes andMF.PC are
shown in Table S1, E–G. Table S2 lists a complete output of
StringDB and EnrichR analyses of each cluster shown in Fig. 1 B.
Table S3 shows counts and proportions of genes induced by in-
flammatory cytokines that are shared between immunocytes.

Data availability
Results are displayed on the ImmGen website (https://rstats.
immgen.org/Skyline/skyline.html?datagroup=ImmGen%
20Cytokines%20Inflammatory). Primary data are available
on NCBI Gene Expression Omnibus (GSE239946). Custom code
is available from the corresponding author upon reasonable
request.
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Supplemental material

Figure S1. Inflammatory cytokine-induced responses in monocytes by flow cytometry analysis, and in peritoneal cavity macrophage and CD4 näıve
T cell by FoldChange/FoldChange analyses. (A) While CD115 was downregulated in splenic monocytes 2 h after i.v. injection of IL6 versus IL1β, CX3CR1
remained relatively unchanged compared with a control injection using PBS. A complete flow cytometry panel of immunocytes can be found at https://www.
immgen.org. (B and C) FoldChange/FoldChange plots comparing (B) TNFα (x-axis) versus IL1β (y-axis) in peritoneal cavity macrophage (MF.PC/MFpc), and (C)
TNFα (x-axis) and IL6 (y-axis) in CD4 näıve T cells (T4n).
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Provided online are Table S1, Table S2, and Table S3. Table S1 shows a complete guide to the sorted immunocytes and their log2 fold
change values and P values of inflammatory cytokine induced genes. Table S2 shows cluster-wise bioinformatic analyses. Table S3
shows quantification of shared inflammatory cytokine induced genes between immunocytes.

Figure S2. Little cell-type specificity in the data from Cui et al. (2024). The conclusions that IL1β induces distinct gene programs in almost every cell type
(Cui et al., 2024) conflicted markedly with present observations (and with conclusions from our previous work [Baysoy et al., 2023]) that responses overlapped
highly between cell types. This discordance was surprising because the experimental strategy of injecting cytokines in vivo was similar between the two
studies, with minor technical differences (i.v. versus s.c. injection, 2- versus 4-h harvest, spleen versus LN) and mostly differing by the type of RNAseq, sorted
cell types versus pseudobulking of single-cell RNAseq of cell types defined by clustering). We thus reanalyzed the original data from Cui et al. (2024), both
primary data obtained from the authors and the genes selected as cell-type specific in Fig. 2 B and Table S4, which were used to support the claims of cell-type
specificity. (A) Comparison of population RNAseq (this paper) and single-cell RNAseq results (Cui et al., 2024), effects in naive CD4+ T cells or in monocytes.
Note the generally good overlap between the effects of IL1β revealed by both studies, albeit with some dropout of transcripts in the single-cell data. Thus, the
discordant conclusions did not stem from the data in themselves. (B) Closer analysis of the IL1β response in CD4+ T cells. The primary data obtained from the
authors showed a marked response, with 406 transcripts significant at adjusted P value <0.05 (green highlights, top panel). This response matched well with
genes identified as IL1β-responsive in the present study (red and blue highlights, middle panel), although some IL1β-responsive transcripts were missed in the
single-cell data, mostly those with signal intensity <0.1 cp10K), as expected from the poorer sensitivity of single-cell data at low expression values. A more
important issue, however, was that the genes listed in Table S4 of Cui et al. (2024) represented only a small proportion of all induced genes that passed Padj
<0.05 in the single-cell data. This selection resulted from downsampling introduced in the analysis of Cui et al. (2024) to compare matched numbers of cells;
unfortunately, it resulted in a strong loss of power to compare differentially expressed genes (DEGs) in different cells. (C) FoldChange/FoldChange comparison
of the response to IL1β in CD4+ and CD8+ T cells (data from Cui et al. [2024]), showing a quasicomplete concordance between the two cell types, contrary to
the representation in Table S4, which listed 40 genes uniquely responsive in CD4+ or CD8+ T cells, versus 25 shared. Most problematically, transcripts listed as
specifically induced in either cell (red and green highlights) were all clearly induced in both. (D) As in C, comparing responses to IL1β in plasmacytoid dendritic
cells (pDC) and migratory dendritic cells (MigDC). Here again, the vast majority of transcripts represented to be specifically induced in one cell or the other
were clearly induced in both (especially for genes identified as MigDC specific), albeit with quantitative differences. (E) Same comparative analysis for the
response to IL2 in natural killer (NK) cells. Every single transcript claimed to be NK specific in Table S4 was found in the upper right quadrant, denoting
induction in CD8+ T cells, with less than a twofold difference in induction (dashed lines), and sometimes even stronger in CD8+ T cells (the same applies to
genes listed as IL2-responsive specifically in CD8+ T cells, although in this instance∼15% do appear specific). (F) Simple recomputation of cell-type specificity in
data from Cui et al. (2024). For each cell type, the number of genes induced by IL1βwas determined (FoldChange >2 and adjusted P value <0.05). Among those,
genes induced by >1.3 in any one of the other cell types were counted (note that this conservative estimation under-represents sharing in the low response
range). On average, 20–30% of transcripts were cell-type specific, with the exception of responses in neutrophils and mast cells. In summary, this reanalysis
shows that cell specificity displayed in Fig. 2 B and Table S4 of Cui et al. (2024) is misleading and is weakened or eliminated once actual inductions and
repression values are considered, especially when comparing cell types within a branch. The misrepresentation stems in part from the inherently lower
sensitivity of single-cell RNAseq to detect changes (B), but mostly from deducing cell specificity non-quantitatively by intersecting lists of DEGs derived at
arbitrary statistical cutoffs (the common danger of Venn diagrams), which was compounded here by the downsampling procedure that had to be applied for
cell–cell comparisons but further affected discriminating power. While there is certainly some cell-type specificity to cytokine responses, and some of this
specificity can have important functional consequences, the data of Cui et al. (2024) equally support our claim of extensive redundancy between responses.
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