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AIRE relies on Z-DNA to flag gene targets for 
thymic T cell tolerization

Yuan Fang1,2, Kushagra Bansal3, Sara Mostafavi4,5, Christophe Benoist1 & Diane Mathis1 ✉

AIRE is an unconventional transcription factor that enhances the expression of 
thousands of genes in medullary thymic epithelial cells and promotes clonal deletion 
or phenotypic diversion of self-reactive T cells1–4. The biological logic of AIRE’s target 
specificity remains largely unclear as, in contrast to many transcription factors, it 
does not bind to a particular DNA sequence motif. Here we implemented two 
orthogonal approaches to investigate AIRE’s cis-regulatory mechanisms: construction 
of a convolutional neural network and leveraging natural genetic variation through 
analysis of F1 hybrid mice5. Both approaches nominated Z-DNA and NFE2–MAF as 
putative positive influences on AIRE’s target choices. Genome-wide mapping studies 
revealed that Z-DNA-forming and NFE2L2-binding motifs were positively associated 
with the inherent ability of a gene’s promoter to generate DNA double-stranded breaks, 
and promoters showing strong double-stranded break generation were more likely to 
enter a poised state with accessible chromatin and already-assembled transcriptional 
machinery. Consequently, AIRE preferentially targets genes with poised promoters. 
We propose a model in which Z-DNA anchors the AIRE-mediated transcriptional 
program by enhancing double-stranded break generation and promoter poising. 
Beyond resolving a long-standing mechanistic conundrum, these findings suggest 
routes for manipulating T cell tolerance.

Deep learning has recently emerged as a powerful tool for uncovering 
complex genomic-sequence patterns that are predictive of various 
functional features in the genome6. Convolutional neural networks 
(CNNs)—a regularized type of feed-forward network—are some of the 
most established deep-learning algorithms, and have been successfully 
applied to the analysis of various types of genomic data with impressive 
results7. The ability of CNNs to model complex nonlinear dependen-
cies between sequence features of arbitrary lengths makes them an 
attractive approach for investigating the cis-regulatory elements dis-
tinguishing AIRE-target genes.

Another powerful strategy for systematic exploration of cis- 
regulatory mechanisms is to exploit the natural genetic variation 
in target-gene cis-regulatory elements in different mouse strains. 
In particular, the F1-hybrid approach, which eliminates confound-
ing influences of trans factors, has been used successfully in several 
immunological contexts5,8. This approach seemed ideal for identify-
ing DNA-sequence features underlying AIRE’s target specificity by 
unbiasedly testing the association between genetic variation in each 
transcription factor (TF)-binding motif and allelic imbalances in the 
chromatin accessibility and expression of AIRE-induced genes.

Employing a CNN
To distinguish the extended-promoter sequences of previously collated 
sets of AIRE-induced and expression-matched AIRE-neutral genes9, 

we built and trained a CNN model with dilated convolutional layers 
and residual skip connections7. This approach followed a relatively 
new paradigm in the deep-learning field: pre-training on large-scale 
datasets to acquire generic knowledge and then transfer the knowledge 
to specific downstream tasks, termed the fine-tuning process. At that 
point, inputs to the model were extended-promoter sequences from 
the C57BL/6J genome, that is, DNA stretches ±1,024 bp from the tran-
scriptional start sites (TSSs); outputs were predictions as to whether 
the input sequence was from an AIRE-induced or AIRE-neutral gene. 
Our overall two-stage strategy and diverse quality-control data are 
depicted in Extended Data Fig. 1 and additional explanations are pro-
vided in the Supplementary Notes.

To retrieve relevant sequence features learned by the deep CNN, 
we computed a contribution score to the output prediction (gradi-
ent × input) for each input nucleotide using back-propagation. We 
then extracted the stretch of input sequence with the highest positive 
contribution scores for each input DNA sequence, thereby highlighting 
the regions that are most predictive of AIRE-induced genes. These sub-
sequences were scanned for both de novo motifs and known TF-binding 
motifs. (CA)n repeats (Methods and Supplementary Notes) and the 
NFE2–MAF-binding motif (a specific type of bZIP-family TF-binding 
motif)10 were enriched in the regions with the largest positive gra-
dients (Fig. 1a and Supplementary Table 1), as exemplified by the 
contribution-score profiles of four AIRE-induced genes (Extended 
Data Fig. 2a).
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In silico saturation mutagenesis (ISM) inspects the influence of every 
nucleotide in an input sequence on a prediction of interest by analysing 
how single-nucleotide substitutions of it impact the prediction6. This 
approach also identified (CA)n repeats and the NFE2–MAF-binding 
motif as features that affect AIRE’s target-gene specificity (Fig. 1b,c and 
Extended Data Fig. 2b). By contrast, simple motif-enrichment analysis 
could not identify these two DNA features as being relatively enriched 
in the extended-promoter sequences of AIRE-induced genes compared 
with AIRE-neutral genes (Extended Data Fig. 2c). (CA)n repeats are well 
known to be Z-DNA-forming sequences11; in general, alternating purine–
pyrimidine tracts are sequences with high potential to form Z-DNA12. 
We therefore also examined whether the Z-DNA scores computed by an 
independent Z-DNA prediction model, Z-DNABERT13, were sensitive to 
in silico single-nucleotide mutations in the (CA)n repeats at promoters 
of AIRE-induced genes. This indeed proved to be the case (Extended 
Data Fig. 2d,e).

To further confirm that Z-DNA-forming and NFE2–MAF-binding 
motifs were predictive of AIRE-induced loci, we randomly selected 
hundreds of genes originally classified in our model as AIRE neutral 
and then, for each gene, replaced part of the input sequence at vary-
ing positions with a (CA)n repeat or an NFE2–MAF-binding motif, 
which would address whether these motifs were sufficient for the 
input sequence to be reclassified as being AIRE-induced. For (CA)n 
repeats, various replacement settings were tested, including single, 
double or triple (CA)8 repeats and a single (CA)16 repeat. The longer 
and more TSS-proximal (CA)n repeats were more likely to ‘convert’ 
AIRE-neutral genes into AIRE-induced genes in silico (Fig. 1d). In com-
parison, replacement with random sequences of the same length did 
not significantly influence the model’s predictions. Replacements 
with NFE2–MAF-binding motifs resulted in a somewhat smaller impact 

(Fig. 1e), but this effect was still significant in comparison to replace-
ment by a bZIP-family-binding motif not enriched in the strongly posi-
tive gradient regions, that is, the BATF3-binding motif.

We next identified all of the Z-DNA motifs at promoters of 
AIRE-induced and AIRE-neutral genes. The former set had signifi-
cantly longer Z-DNA motifs compared with the latter (Fig. 1f and 
Supplementary Table 2). To examine which quantitative features of 
Z-DNA-forming motifs were most predictive of AIRE-induced genes, 
we tested how the length and distance from the TSS of Z-DNA-forming 
motifs were associated with the likelihood of a weakly expressed gene 
to become AIRE-induced. Specifically, we quantified the percentage 
of AIRE-induced genes among weakly expressed loci that had Z-DNA 
motifs of varying lengths and of varying distances from TSSs. There was 
an increasingly higher percentage of AIRE-induced genes among the 
entire pool of weakly expressed loci with longer Z-DNA motifs (Fig. 1g). 
The relative distances of Z-DNA motifs to the TSSs had a negative impact 
on AIRE’s targeting preferences (Fig. 1h), consistent with results from 
the in silico sequence-replacement experiments (Fig. 1d).

Leveraging natural genetic variation
As an orthogonal approach to investigating AIRE’s cis-regulatory 
mechanisms, we leveraged natural genetic variation between the B6 
and NOD mouse strains to systematically examine the contribution 
of cis-regulation to AIRE-induced gene expression (NOD rather than 
the more typical CAST/EiJ (CAST) comparator was chosen because of 
its propensity to develop autoimmunity). We generated F1 hybrids 
by crossing NOD and B6 mice, and performed genome-wide RNA 
sequencing (RNA-seq) and assay for transposase accessible chromatin 
with high-throughput sequencing (ATAC–seq) analyses of medullary 
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Fig. 1 | The Z-DNA and NFE2–MAF-binding motifs are salient features of the 
extended promoters of AIRE-induced genes. a, Motifs enriched in the regions 
with the largest positive contribution scores. b,c, The ISM scores for promoters 
of two AIRE-induced genes containing (CA)n repeats (b) or NFE2–MAF-binding 
motifs (c). Each of the three rows shows results for one possible substitution in 
the order of A to C to G to T from top to bottom. Decreased (red) and increased 
(blue) predictive probability as an AIRE-induced gene after substitution are 
indicated. d, The effect of in silico replacement by (CA)n repeats or random 
sequences of the same length on the predictions of the CNN model. For each 
ANG, 50 positions spaced evenly across the 1,000 bp region upstream of the 
TSS were individually tested for replacement. The distance between adjacent 
(CA)8 repeats was 20 bp when multiple (CA)8 repeats were used. e, Analogous 

plots showing the effect of the NFE2–MAF-binding motif on the predictions.  
The NFE2–MAF-binding motif and the BATF3-binding motif belong to  
the TRE–MARE and CRE–CRE subclass of the bZIP family10, respectively.  
f, Comparison of the lengths of Z-DNA motifs at the promoters of AIRE-induced 
genes (n = 1,747) versus ANGs (n = 1,520). g,h, The proportion of AIRE-induced 
genes among weakly expressed genes (Methods) that have Z-DNA motifs of 
varying lengths (g; the red line) or Z-DNA motifs of varying distances relative  
to the TSS (h; the red line). The dotted grey lines indicate the percentage of 
AIRE-induced genes (n = 1,563) among all of the weakly expressed genes 
(n = 4,537). P values were calculated using two-tailed Wilcoxon rank-sum tests  
(f) and Spearman correlation (g and h). ANG, AIRE-neutral gene; TPM, transcripts 
per million.
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thymic epithelial cells (mTECs) from the two parental strains and their 
offspring (Extended Data Fig. 3a,b and Supplementary Table 3). We 
then examined the effects of naturally occurring genetic variants, 
including single-nucleotide polymorphisms (SNPs) and insertions 
and deletions (indels), on the transcription and chromatin accessibil-
ity of AIRE-induced genes. There are approximately 5.1 million SNPs 
and indels in the NOD versus B6 genomes14, enabling us to unbiasedly 
examine, for each TF-binding motif, which sequence variants were 
associated with allelic imbalances in chromatin accessibility and expres-
sion of nearby AIRE-induced genes (Extended Data Fig. 3c). Allelically 
imbalanced open chromatin regions (OCRs) and gene transcripts were 
identified using the beta-binomial test. Overall, we identified 3,750 
imbalanced OCRs and 1,975 imbalanced gene transcripts (Extended 
Data Fig. 3d).

There was a substantial positive correlation between the fold changes 
in chromatin accessibility of the two parental strains and the allelic 
imbalances in chromatin accessibility of the F1 hybrids (Extended Data 
Fig. 3e), suggesting that the differential chromatin accessibilities of 
mTECs from B6 versus NOD mice were primarily cis-regulated, as has 
been reported for other cell types5. Moreover, 77% of genes expressed 
differentially between B6 and NOD mTECs were regulated in cis because 
their expression differences in the two parental strains were recapitu-
lated as allelic imbalances in F1-hybrid mTECs (Extended Data Fig. 3f). 
Particularly, there was a strong positive correlation between allelic 
imbalances in chromatin accessibility at OCRs and expression of the 
nearest AIRE-induced genes (Extended Data Fig. 3g), indicating that 
cis-regulatory variation was a major contributor to the imbalanced 
expression of AIRE-induced genes in F1-hybrid mTECs.

For each motif in the CIS-BP database, we scanned the two alleles of 
the imbalanced OCRs for matches, and assigned each OCR to the allele 
with which it had the stronger motif match. To determine whether motif 
variants of this particular TF were associated with the generation of 
imbalanced OCRs, we compared the allelic imbalance in the ATAC–seq 
signals at the OCRs that have stronger motif matches with the B6 allele 
with those that have stronger matches with the NOD allele (Extended 
Data Fig. 3c). This method revealed that genetic variants in binding 
motifs of the bZIP-family TFs and in (CA)n-containing motifs were sig-
nificantly associated with allelic imbalances in transcript expression 
and chromatin accessibility of AIRE-induced genes (Fig. 2a). Among 
the bZIP-family TFs, NFE2L2’s motif variants had the strongest asso-
ciation with chromatin accessibility, with an average of around 70% 
of SNP/indel-overlapping ATAC–seq reads mapping to the allele with 
the stronger match to the NFE2L2-binding motif. Notably, MAFF, a 
bZIP-family TF that can form a heterodimer with NFE2L2 to regulate 
target-gene expression10, was high among those of which the binding 
motifs were associated with imbalanced expression of AIRE-induced 
genes. These two observations suggested that an NFE2–MAF heter-
odimer (for example, NFE2L2–MAFF) might be a positive influencer of 
AIRE-induced gene expression: the OCR allele with a stronger match to 
the NFE2–MAF-binding motif was more accessible and the expression 
of an AIRE-induced gene was biased to the allele with a stronger match 
to the NFE2–MAF-binding motif (Fig. 2b and Extended Data Fig. 4a,b).

To explore the associations of motifs not included in the CIS-BP data-
base on allelic imbalances, we performed de novo motif analysis to iden-
tify sequences that are enriched in the imbalanced OCRs assigned to 
AIRE-induced genes. Both the NFE2L2-binding motif and (CA)n repeats 
were enriched in the imbalanced OCRs of AIRE-induced genes (Fig. 2c). 
As an example for the Z-DNA motif, the NOD allele of the promoter of 
the AIRE-induced gene Marcksl1 had a longer Z-DNA-forming motif, 
and the expression of Marcksl1 was also biased to the NOD allele in the 
F1-hybrid mTECs (Fig. 2d; additional examples are shown in Extended 
Data Fig. 4c,d). Although there were other DNA motifs of potential 
interest, the convergence on Z-DNA-forming and NFE2–MAF-binding 
motifs in the CNN and F1-hybrid data prompted us to focus on these 
two elements in subsequent experiments.

Z-DNA is associated with AIRE-induced gene 
expression
Z-DNA is a noncanonical, left-handed, double-helical form of DNA11. 
There are tens of thousands of Z-DNA motifs in mammalian genomes13,15, 
enriched at gene promoters. The lengths of Z-DNA-forming motifs 
are positively correlated with promoter activities and downstream 
gene expression, and several studies have demonstrated them to have 
cis-regulatory activity12,16–20. Z-DNA motifs are hotspots of genetic 
variation in human populations, and contain an excess of expression 
quantitative trait loci12,21.

We first verified in vivo Z-DNA formation at gene promoters in the 
mTECs of mice with wild-type (WT) Aire by performing chromatin 
immunoprecipitation followed by sequencing (ChIP–seq) using the 
Z22 antibody22, which recognizes both Z-DNA and Z-RNA (the latter of 
which was removed during the ChIP–seq procedure; quality-control 
data are shown in Supplementary Table 3). Genes with higher expres-
sion levels generally had stronger Z-DNA signals at their promoters 
(Fig. 3a), consistent with another study that mapped Z-DNA formation 
genome-wide19. Notably, for all four gene sets (binned by expression 
levels), promoters with Z-DNA-forming motifs exhibited stronger 
Z-DNA signals compared with those without such motifs, suggesting 
that alternating purine/pyrimidine tracts (Z-DNA-forming motifs) 
indeed more readily formed Z-DNA in vivo. In vivo detection of Z-DNA 
signals at promoter regions was more dependent on Z-DNA-forming 
motifs for genes with relatively low expression levels, probably due 
to the limited availability of energy from negative supercoils induced 
by active transcription. Given that AIRE-induced genes are generally 
transcribed at low levels in the absence of AIRE, Z-DNA-forming motifs 
in their promoters could have a strong impact on their expression. 
There was clear enrichment both of Z-DNA in AIRE peaks and, vice 
versa, of AIRE in Z-DNA peaks (Fig. 3b), and AIRE-binding levels were 
positively correlated with Z-DNA signals within Z-DNA peaks (Fig. 3c).

To directly test the hypothesis that Z-DNA influenced AIRE-induced 
gene transcription, we enhanced Z-DNA formation in mTECs by intra-
peritoneal injection of spermidine, which is known to stabilize Z-DNA 
formation in vitro or in vivo20,23,24. Flow cytometry analyses 7 days 
after administration of spermidine confirmed that Z-DNA forma-
tion was indeed increased (Extended Data Fig. 5a). Importantly, this 
spermidine-injection protocol did not affect the number or composi-
tion of the major thymic stromal cell or thymocyte compartments 
(Extended Data Fig. 5b–d). RNA-seq analyses showed that injection 
of spermidine into Aire-KO mice partially rescued the loss of AIRE, as 
indicated by increased expression of a proportion of the previously 
assigned AIRE-induced genes (termed AIRE-inducible genes in the 
absence of AIRE) among those with relatively higher mean expres-
sion values (Fig. 3d (arrow); mean expression >16). Specifically, 8.5% 
of these AIRE-inducible genes had fold changes of greater than 2, while 
5.0% had fold changes of less than 0.5. By contrast, we did not see such 
an effect on the activities of expression-matched AIRE-neutral genes 
(Fig. 3d). These findings raised the possibility that enhanced Z-DNA 
formation enabled the recruitment of factors that are required for  
transcriptional induction through some mechanism that bypassed 
the need for AIRE, thereby allowing induction of some AIRE-inducible 
genes in mTECs of Aire-KO mice.

We also injected spermidine into Aire-WT mice. There were 240 
more AIRE-induced genes (fold change >2, P < 0.05) after spermi-
dine injection than after control injection of phosphate-buffered 
saline (PBS) (Extended Data Fig. 6a (left)). In this context, most of the 
spermidine-induced genes were expressed at low levels after PBS treat-
ment (Extended Data Fig. 6a (right)), suggesting that Z-DNA formation 
enabled AIRE to upregulate the expression of more genes with low basal 
levels of transcription.

To better understand the effect of spermidine on AIRE-induced gene 
expression, we performed single-cell RNA-seq (scRNA-seq) analysis of 
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the mTEC compartments of PBS- and spermidine-injected Aire-WT mice 
(Extended Data Fig. 6b,c and Supplementary Table 4). We focused on 
the AIRE-expressing cell clusters that also showed high expression of 
major histocompatibility complex class II (MHC-II) genes (also known as 
mTEChi) (Extended Data Fig. 6d). Spermidine treatment did not substan-
tially influence the transcriptome of AIRE-expressing cells; however, 
there was a significant upregulation of AIRE-induced, although not 
AIRE-neutral, genes (Fig. 3e), suggesting a collaboration between AIRE 
and Z-DNA (in this case, to focus the analysis on AIRE-expressing mTECs, 
AIRE-induced genes were defined by comparing the transcriptomes of 
AIRE-GFP+ mTECs from Aire-WT and Aire-KO mice, that is, the same bulk 
B6 RNA-seq datasets that we used for the F1 analyses).

Z-DNA promotes DSBs at AIRE-induced genes
How Z-DNA enhances transcription is not fully clear. Z-DNA struc-
tures are inherently fragile and can promote the generation of 
double-stranded breaks (DSBs), sometimes spreading over a few 
hundred base pairs25,26. Although the enzyme responsible for 
Z-DNA-mediated DSB generation remains unclear, strong candidates 
include DNA topoisomerases (TOPs)25. TOP-generated DNA breaks are 
enriched at cis-regulatory regions, including promoters, enhancers and 
chromatin loop anchors27. The TOP-reaction cycle sometimes fails to 
reseal the DNA breaks, leading to their persistence, the recruitment of 
proteins involved in the DNA-damage response (DDR) and induction 
of DNA-repair pathways28,29. DNA breaks and DDR proteins regulate 
multiple aspects of transcription, including promoting initiation. Both 

DSBs and TOPs can facilitate de novo recruitment of transcriptional 
machineries, including Pol II and general TFs30–32. Notably, the proteins 
involved in DSB generation and the DDR are both physically and func-
tionally associated with AIRE in mTECs9,33,34, prompting the hypothesis 
that Z-DNA affects AIRE’s target choices by promoting DSB generation 
at the regulatory sequences of AIRE-induced genes.

We profiled the DSBs of mTECs from both Aire-WT and Aire-KO mice 
genome-wide, using the break labelling in situ and sequencing (BLISS) 
technique (Supplementary Table 5). In mTECs from Aire-WT mice, BLISS 
signals were enriched at the Z-DNA peaks delineated by ChIP–seq and, 
vice versa, Z-DNA signals were enriched at DSB hotspots (Fig. 4a); plus, 
there was a positive correlation between the Z-DNA and DSB signal 
strengths (Extended Data Fig. 7a). In the absence of AIRE, promoters of 
AIRE-inducible genes that contained more Z-DNA-forming motifs had 
significantly stronger BLISS signals compared with those without them 
(Fig. 4b (left)); by contrast, (GA)n repeats were not positively associated 
with BLISS signal intensity at the promoters of AIRE-inducible genes 
(Fig. 4b (right)). There were stronger BLISS signals at promoters of 
AIRE-inducible genes than those of expression-matched AIRE-neutral 
genes in mTECs from Aire-KO mice (Extended Data Fig. 7b). Thus, Z-DNA 
was associated with DSB generation at the promoters of AIRE-inducible 
genes independently of AIRE.

To directly test Z-DNA’s function in enhancing DSB generation, we 
performed BLISS analysis of spermidine-treated Aire-WT mTECs. The 
DSB hotspots most upregulated by spermidine (fold change >2, P < 0.1) 
were significantly more enriched with Z-DNA-forming motifs com-
pared with those unaffected by spermidine (Extended Data Fig. 7c).  
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Fig. 2 | Identification of TF-motif variants associated with allelic imbalances 
in the chromatin accessibility and expression of AIRE-induced genes. a, TFs 
associated with allelic imbalance at the gene transcript level and chromatin 
accessibility of AIRE-induced genes. The red and blue dots represent potential 
positive and negative regulators, respectively. TFs with P < 0.1 are shown.  
b, An example of a genetic variant of the NFE2L2-binding motif associated with 
imbalanced OCR accessibility and expression of an AIRE-induced gene. There  
is an intact NFE2L2-binding motif in the OCR of Bpifb1 on the B6 allele, which is 

disrupted in the NOD allele due to an A to G conversion (marked by the asterisk*). 
c, Motif-enrichment analysis for imbalanced OCRs associated with 
AIRE-induced genes (n = 757). d, An example of a genetic variant of a Z-DNA 
motif associated with allelic imbalance in OCR accessibility and expression of 
an AIRE-induced gene. At the promoter of Marcksl1, the NOD allele contained a 
longer (CA)n repeat than the B6 allele due to an insertion. P values for TFs in a 
were calculated using two-tailed Wilcoxon rank-sum tests.
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By contrast, control CTCF-binding motifs exhibited similar enrichment 
in upregulated and unaffected DSB hotspots (Extended Data Fig. 7c), 
again arguing that spermidine treatment could enhance Z-DNA forma-
tion, which favoured DSB generation.

In an independent approach to unbiasedly investigate what DNA 
sequence features influenced DSB generation in mTECs, we performed 
BLISS analysis of F1-hybrid mTECs generated by crossing CAST and B6 
mice. In comparison to the B6 genome, the CAST genome has around 
20 million genetic variants14. We sought to identify TF-binding motifs 
of which the genetic variants were associated with imbalanced DSB 
generation on the two alleles of DSB hotspots. CTCF appeared to be 
a positive regulator of DSB generation as the allele with a stronger 
match with the CTCF-binding motif had significantly higher DSB signals 
(Extended Data Fig. 7d). This finding is consistent with studies demon-
strating that polymorphisms in CTCF-binding motifs are accompanied 
by relocation of DSBs at chromatin-loop anchors35, serving to validate 
our approach. (CA)n repeats were also positive regulators of DSB gen-
eration (Extended Data Fig. 7e). The results from this set of studies 
prompted us to hypothesize that Z-DNA functions upstream of AIRE to 
regulate the generation of DSBs at promoters of AIRE-induced genes.

DSBs and promoter poising before AIRE action
We profiled chromatin accessibility using ATAC–seq9; DNA DSB genera-
tion using BLISS; binding of NELF, an indicator of promoter poising, 

using ChIPmentation; and binding of Ser5-phosphorylated RNA poly-
merase II (Pol II-pS5), a proxy for Pol II pausing, using cleavage under 
targets and tagmentation (CUT&Tag) analysis of mTECs from Aire-KO 
versus Aire-WT mice. As expected36, promoters of AIRE-inducible genes 
were poised for expression before AIRE engagement, as indicated by 
accessible chromatin, NELF binding and Pol II pausing in its absence 
(Fig. 4c). The decrease in NELF binding in the presence of AIRE was con-
sistent with its ability to release paused Pol II from poised promoters36,37. 
Promoters of expression-matched AIRE-neutral genes were less accessi-
ble and showed less Pol II binding compared with those of AIRE-inducible 
genes in mTECs from Aire-KO mice (Extended Data Fig. 8a). Exemplar 
profiles are shown for two AIRE-inducible genes and one AIRE-neutral 
gene that had low basal expression (Extended Data Fig. 8b).

Previous studies have demonstrated the importance of DSBs and 
TOPs in assisting the disassembly of nucleosomes and assembly of 
preinitiation complexes at gene promoters30–32,38. In agreement, we 
observed BLISS signals to be strongly correlated with chromatin 
accessibility, NELF binding and Pol II binding at AIRE-inducible-gene 
promoters in mTECs of Aire-KO mice (Fig. 4d). High BLISS signals in 
Aire-KO mTECs were also associated with strong recruitment of total 
Pol II, AIRE and MED1 (a key subunit of the mediator complex required 
for Pol-II-mediated transcription) in Aire-WT mTECs (Extended Data 
Fig. 8c), and AIRE binding in Aire-WT mTECs was positively correlated 
with Pol II binding at promoters of AIRE-inducible genes in Aire-KO 
mTECs (Fig. 4e). Thus, before the engagement of AIRE, strong DSB 
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generation at promoters of AIRE-inducible genes is associated with 
promoter poising and foretells binding of AIRE.

Z-DNA-promoted DSBs enhance promoter poising
Topotecan prevents TOP1 from religating the DNA strands that it 
breaks, thereby enhancing the persistence of DNA breaks39. Topotecan 
treatment of Aire-WT mice significantly increased DSB generation at 
AIRE-binding sites (Fig. 5a) as well as AIRE binding at promoters of AIRE-
induced genes (Fig. 5b). Accordingly, there was a general increase in 
the expression of AIRE-induced, but not AIRE-neutral, genes after treat-
ment with topotecan (Fig. 5c). More generally, DSB hotspots upregu-
lated by topotecan contained slightly longer Z-DNA-generating motifs 
compared with those unchanged after topotecan treatment (Fig. 5d).

To further substantiate that Z-DNA regulated promoter poising in cis, 
we profiled chromatin accessibility at the promoters of genes subject 
to AIRE induction in mTECs of Aire-KO mice treated with spermidine. 
Compared with control injection of PBS, administration of spermidine 
increased the accessibility of such promoters (Fig. 5e).

NFE2L2 affects AIRE-induced gene expression
Both the CNN and F1-hybrid approaches pointed to the NFE2–MAF het-
erodimer as a second putative regulator of AIRE-induced-gene expres-
sion. There are three NFE2-related factors in mice and humans—NFE2L1, 
NFE2L2 and NFE2L3—all of which are expressed in mTECs. We focused 
on NFE2L2 because floxed-Nfe2l2 mice were available and because 
NFE2L2 is known to induce the expression of some of its target genes 
by stabilizing nearby Z-DNA formation40.

Thus, we examined the correlation between the strength of DSB 
signals and the presence of NFE2L2-binding motifs at promoters of 
AIRE-inducible genes in mTECs from Aire-KO mice. DSB hotspots 
containing more NFE2L2-binding motifs had significantly stronger 
DSB signals compared with those with fewer such motifs; this was 
not always true of DSB hotspots with CTCF-binding motifs (Extended 
Data Fig. 9a). Moreover, the DSB hotspots upregulated in mTECs of 
spermidine-treated Aire-WT mice (FC > 2, P < 0.1) were more enriched 
with NFE2L2-binding motifs compared with those unaffected by sper-
midine (Extended Data Fig. 9b).

Z-DNA-forming motifs and NFE2L2-binding motifs had distinct 
distribution patterns at DSB hotspots: the former enriched around 
the centres and the latter concentrated at the boundaries (Extended 
Data Fig. 9c). This pattern was consistent with previous studies show-
ing that NFE2L2 can stabilize Z-DNA formation nearby, and that the 
Z-DNA structure propagates into adjacent segments from the cen-
tral Z-DNA-forming motifs in a cooperative manner16–18. NFE2L2 can 
stabilize Z-DNA formation by recruiting BRG117, a core subunit of the 
BAF chromatin-remodelling complex. BRG1 stabilizes the energeti-
cally unfavourable formation of Z-DNA by using the energy produced 
by nearby nucleosome ejection16,18. BRG1 was reported to increase 
the accessibility of cis-regulatory elements of AIRE-induced genes, 
thereby poising these loci for expression41. We reanalysed published 
ATAC–seq data for mTECs of mice lacking BRG1 (encoded by Smarca4) 
specifically in TECs (and skin) versus WT control mice41. The OCRs 
upregulated by BRG1 had longer Z-DNA-forming motifs compared 
with those unaffected by BRG1 expression (Extended Data Fig. 9d and 
Supplementary Table 6). Moreover, de novo motif analysis showed that 
both (CA)n repeats and NFE2L2-binding motifs were enriched at OCRs 
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upregulated by BRG1, while the CTCF-binding motif was increased at 
OCRs unaffected by BRG1 expression (Extended Data Fig. 9e).

We next compared the transcriptomes of mTECs from Foxn1cre 
Nfe2l2flox/flox mice and Foxn1creNfe2l2WT/WT littermate controls. We first 
established that the expression of the genes encoding the other two 
NFE2-related factors was unaffected in these mice (Extended Data 
Fig. 9f) and that Nfe2l2-KO mice had thymic stromal-cell compart-
ments of normal number and composition (Extended Data Fig. 9g). 
RNA-seq analysis revealed that expression of AIRE-induced genes with 
NFE2L2-binding motifs at their promoters was slightly more depressed 
in the absence of Nfe2l2 compared with the expression of AIRE-neutral 
genes (Extended Data Fig. 9h). This mild effect may reflect redundancy 
between NFE2L2 and other family members. More of the differentially 
expressed loci in Nfe2l2-KO mTECs were AIRE induced than AIRE-neutral 
genes (Extended Data Fig. 9i), suggesting that the lack of NFE2L2 did 
not generally influence mTEC functions. Notably, the differentially 
expressed AIRE-induced genes were about half upregulated and half 
downregulated, indicating that NFE2L2 may not be a general upregu-
lator of AIRE-induced genes, consistent with the limited effect of the 
NFE2–MAF motif sequence in the in silico replacement experiment 
(Fig. 1e). Together, the two findings suggest that other TFs may cooper-
ate with Z-DNA to regulate AIRE’s target specificity.

KEGG pathway analysis of the differentially expressed genes identi-
fied a diverse set of mainly downregulated gene modules composed 

of AIRE-induced genes (Extended Data Fig. 10a,b). This finding sug-
gested that NFE2L2 might at least partially facilitate AIRE-induced 
gene expression in a hierarchical manner in which NFE2L2 upregulates 
the expression of certain TFs that induce the expression of groups 
of functionally related AIRE-induced genes. It was recently reported 
that AIRE indirectly induces the expression of groups of functionally 
related genes encoding peripheral-tissue antigens by promoting the 
generation of thymic mimetic cells, that is, mTEC subtypes of which 
the transcriptional programs mimic those of particular peripheral cell 
types42–44. The generation of mimetic mTECs depends on the expres-
sion of the appropriate lineage-defining TFs, which directly bind to 
and induce the transcription of sets of peripheral-tissue antigen genes 
characteristic of their peripheral counterparts42. AIRE did upregu-
late the expression of many lineage-defining TFs in mTECs (Extended 
Data Fig. 10c). Importantly, NFE2L2 deficiency downregulated the 
expression of the signature genes of several mimetic mTEC subtypes, 
including Tuft 1, Tuft 2 and microfold mimetic mTECs (Extended Data 
Fig. 10d). The downregulated KEGG term ‘taste transduction’ (Extended 
Data Fig. 10b) indeed enriches for genes related to Tuft cells. Moreover, 
spermidine or topotecan injection led to upregulation of the signature 
genes of several mimetic mTEC subtypes (Extended Data Fig. 10e,f). 
The overlapping influence on tuft mTEC signature genes between sper-
midine treatment, topotecan treatment and loss of NFE2L2 suggests 
that Z-DNA, DSBs and NFE2L2 might cooperate to indirectly regulate 
the expression of groups of functionally related AIRE-induced genes.

Discussion
The logic of AIRE’s target specificity has remained a mystery since its 
identification as a key regulator of autoimmunity1. Extended Data Fig. 11 
illustrates the Z-DNA-anchored model that we propose, and extensive 
discussion of the model is provided in Supplementary Discussion. 
Our findings, coupled with published observations, argue that the 
strength of AIRE recruitment depends on the abundance of preassem-
bled transcriptional machineries3,9,45. Importantly, AIRE-dependent 
upregulation of a gene’s expression is decoupled from AIRE binding to 
the gene’s promoter—strong AIRE binding does not necessarily lead to 
AIRE-dependent upregulation. As AIRE cannot perturb the expression 
of highly transcribed genes that are already robustly induced by TFs, the 
resulting picture is that AIRE preferentially upregulates the expression 
of weakly expressed genes, which has often been incorrectly considered 
to be equal to AIRE preferentially being recruited to weakly expressed 
or repressed genes. This mindset has greatly impeded identification 
of the logic underlying AIRE’s target specificity.

A growing body of results suggests that Z-DNA, as a form of non-B 
DNA, is widely involved in transcriptional regulation. Z-DNA-forming 
motifs are enriched at the promoter regions of a number of genes, influ-
encing their promoter activities and target-gene expression12,18–20,40.  
It remains to be determined how generally the AIRE-focused mechanism 
we have identified operates with other genes and in other cell types.
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Methods

CNN model architecture
Our model was composed of a main body and a task-specific head. The 
architectures of the main body and pre-train46,47 head were similar to 
those of the model Basenji27,48, which is one of the state-of-the-art mod-
els for learning the cis-regulatory lexicon from mammalian genomes. 
However, our model’s main body had a shorter input length and a higher 
nucleotide resolution. At the pre-training stage, we trained a multitask 
CNN model on sequences of 2,048 bp length tiled across the mouse 
genome to predict read-coverage profiles across the 2,048 bp input 
sequence for 1,643 functional genomic read-outs from the ENCODE49 
and FANTOM50 projects. Thus, by modelling activities of genomic 
regulatory sequences as a function of the underlying DNA sequences, 
parameters of the main body were optimized during pre-training to 
encode cis-regulatory DNA-sequence motif information. Details are 
provided below.

The main body of the model consisted of three parts. The first part 
used four convolutional blocks to extract relevant DNA sequence 
motifs. Each convolutional block comprised the following layers:  
(1) batch normalization; (2) 1D convolution (width 20 in the first block, 
width 5 in the following blocks); (3) GELU activation51; and (4) max 
pool (width 2). The convolutional blocks reduced the dimension from 
2,048 bp to 128 so that each position vector encoded sequence informa-
tion of 16 bp. The number of filters in the convolutional layers increased 
from an initial 384 to 768 in the last block. The second part had five 
repeated blocks containing dilated convolutional layers with resid-
ual skip connections52,53 to spread information and model long-range 
interactions across the input DNA sequences. The skip connection 
technique was used to relieve the difficulty in optimization caused by 
the vanishing gradient problem. Each dilated convolutional block had 
the following layers: (1) batch normalization; (2) dilated 1D convolution 
(width 3, filter 768); (3) GELU activation; (4) batch normalization; (5) 1D 
convolution (width 1, filter 768); (6) GELU activation; (7) dropout (rate 
0.3); and (8) skip connection (add with the block input before step 1). 
The dilation rate was increased by a factor of 2 at each block. The third 
part of the main body was a 1D convolution (width 1, filter 1,536) with 
dropout (rate 0.05) to further summarize DNA motif patterns around 
each 16 bp region. Thus, the output from the main body was the 128 
(length) × 1,536 (filters) representation of 16 bp windows across the 
2,048 bp input DNA sequence.

CNN model pre-train
The model was pre-trained on the same sequencing datasets as 
Basenji27,48 (https://console.cloud.google.com/storage/browser/
basenji_barnyard/data/mouse), and used the same Poisson negative 
log likelihood loss. In brief, the 1,643 mouse genome datasets included 
228 DNase-seq or ATAC–seq datasets, 308 TF ChIP–seq datasets, 750 
histone modification ChIP–seq datasets and 357 CAGE datasets. We 
modified the input DNA sequences of Basenji2 by trimming 1/4 length 
on each side of the original input sequence, dividing the kept sequence 
into 2,048 bp subsequences and randomly taking five subsequences 
from the middle half of each sequence. The modified dataset contained 
146,475 training, 11,045 validation and 10,085 test sequences for the 
mm10 mouse genome.

To predict the read coverage profiles for the 1,643 datasets, the 
pre-train head used a 1D convolution (width 8, stride 8, filter 1,643) 
followed by a Softplus activation function to generate a positive value 
for every position in the output 16 × 1,643 representation of 128 bp 
windows.

The pre-training model was implemented in TensorFlow (v1.14.0), and 
was trained on two Tesla V100 GPU cards. We used a batch size of 128, 
and we stopped training when the validation loss had not improved for 
15 epochs and then returned to the model that had achieved the small-
est validation loss. We used the Adam optimizer with a learning rate 

1 × 10−4 and default values for hyperparameters β1 (0.9) and β2 (0.999). 
We used 5,000 warm-up steps to linearly increase the learning rate 
from 0 to 1 × 10−4.

CNN model fine-tune
The fine-tuning dataset consisted of 3,231 extended-promoter 
sequences from AIRE-induced genes and 3,121 sequences from 
expression-matched AIRE-neutral genes in the B6 genome. In total, 80% 
of the dataset was used for training, 15% for validation and 5% for testing. 
Extended promoters were defined as 1,024 bp upstream of the TSSs to 
1,024 bp downstream of the TSSs. All other promoters in the main text 
were defined as 1,000 bp upstream of the TSSs to 200 bp downstream 
of the TSSs. We also included two test sets from the NOD genome. One 
of them had 2,000 sequences that contained SNPs or indels compared 
with their B6 counterparts. The other had 261 sequences that were not 
annotated in the B6 genome. Both NOD test sets were balanced with 
half sequences from AIRE-induced genes and half from AIRE-neutral 
genes. Each sequence was a DNA stretch ±1,024 bp around the TSS. 
To predict whether the input sequence is from an AIRE-induced or 
AIRE-neutral gene, the fine-tune head implemented the following 
operations to transform the representation output by the main body 
to the probability of input sequence being from an AIRE-induced gene: 
(1) 1D convolution (width 1, filter 10); (2) dropout (rate 0.5); (3) GELU 
activation; (4) flatten layer; (5) dense layer (unit 3); (6) GELU activation; 
(7) dense layer (unit 1); and (8) sigmoid activation.

The fine-tuning model was implemented in TensorFlow (v2.3.0) 
and trained on one Tesla V100 GPU card to minimize the binary 
cross-entropy loss. In the first stage of fine-tuning, parameters in the 
main body were frozen when optimizing the parameters in the fine-tune 
head. We used a batch size of 8 and Adam optimizer with a learning rate 
1 × 10−5 and default values for hyperparameters β1 (0.9) and β2 (0.999). 
The optimal batch size, learning rate and dropout rate were tuned by 
grid search using validation dataset. We stopped the first-stage train-
ing when the validation loss had not improved for 20 epochs and then 
returned to the model that had achieved the smallest validation loss. 
We then unfreezed the parameters in the last 1D convolutional layer of 
the main body and trained for another 10 epochs using a small learning 
rate 1 × 10−7 to slightly adjust parameters in the main body.

CNN model interpretation
To identify the DNA sequence motifs that contributed most to the 
prediction accuracy of the model, for each input sample in the dataset, 
we computed the absolute value of the gradient of the output predic-
tion with regard to each input nucleotide using backpropagation. For 
the one-hot encoded dataset, this is equivalent to the gradient × input 
score54. As each position in the representation output by the main body 
represented a 16 bp window in the input sequence, we aggregated the 
gradient × input profile for every input sequence by taking the aver-
age scores for every 16 bp. Thus, we obtained a vector of 128 elements 
for every input sequence, containing the contribution scores for the 
128 16 bp windows. We then determined the genomic loci that had 
the two largest positive contribution scores for each input sequence 
and extracted the DNA sequences centred at these two genomic loci 
containing ten 16 bp windows. To identify DNA motifs enriched in these 
large-positive-gradient sequences, we used the XSTREME program 
(E ≤ 0.05; minimum width, 6; maximum width, 20)55 in the MEME suite 
(v.5.4.1)56 to scan these sequences for both de novo motifs and known 
TF-binding motifs.

Genes originally classified in our model as AIRE-neutral genes 
(n = 583) out of 3,000 randomly selected genes from the genome 
were used for the ISM experiment. For ISM, computational mutation  
was performed for every nucleotide in the 2,048 bp input sequence 
(6,144 substitutions per sequence) to examine how the mutation 
affected the AIRE-induced gene prediction. The effect of the sub
stitution, which was called the ISM score in Fig. 1, was measured as 

https://console.cloud.google.com/storage/browser/basenji_barnyard/data/mouse
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log2[P0/1 − P0] − log2[P1/1 − P1], where P0 is the output of the sigmoid 
function, the prediction probability for the unaltered sequence, and 
P1 for the computationally mutated sequence57. To identify DNA motifs 
enriched in the regions (50 bp in length) with the largest ISM scores, 
we again used the MEME suite56.

In the sequence-replacement experiment, the sequences used were: 
the Z-DNA motifs, (CA)8 and (CA)16 as well as their reverse complements; 
a random control sequence of 16 bp (CTACCTAACGCCCCTA) and its 
reverse complement; a random control sequence of 32 bp (TTGG 
CCGTTAACGTTTGTCTGCCGGATATTCA) and its reverse comple
ment; the NFE2–MAF-binding motif (ATGACTCAGCA) and its reverse  
complement; the BATF3-binding motif (TGACGTCAC) and its reverse 
complement. When calculating the percentage of genes classified 
as AIRE induced after replacement with some sequence, we took the 
union of genes that were reclassified as AIRE-induced genes by the 
neural network due to a replacement by some sequence and by its 
reverse complement.

In silico mutagenesis using Z-DNABERT
Z-DNABERT computes a Z-DNA score (ranging from 0 to 1) for each 
nucleotide in the input sequence, reflecting how likely that nucleotide is 
positioned in a stretch of Z-DNA-forming sequence. (CA)n repeats with 
high Z-DNA-forming potential (default parameter values: ‘model_con-
fidence_threshold’ set to 0.5; and the ‘minimum_sequence_length’ set 
to 10 bp) were identified for promoters of AIRE-induced genes using 
Z-DNABERT (n = 333). Then, for every nucleotide in every (CA)n repeat, 
we performed in silico mutagenesis (ISM) and calculated the ISM score. 
A positive ISM score indicates that substitution of the original nucleo-
tide leads to a decreased average Z-DNA score across the (CA)n repeat. 
The input sequence to Z-DNABERT was still the entire AIRE-induced 
gene promoter sequence, with only one nucleotide in the (CA)n repeat 
mutated to one of the other three nucleotides each time. This procedure 
ensured that all of the other local genomic information stayed the same 
when making predictions.

Example ISM score heat maps showed that disruptions of (CA)n 
repeats in most cases led to decreased Z-DNA scores, the one excep-
tion being CA to CG substitutions. This finding was consistent with the 
fact that Z-DNABERT gave high scores to (CG)n repeats. Distributions of 
ISM scores for nucleotides at various positions near the boundaries of 
(CA)n repeats in AIRE-induced gene promoters showed that ISM scores 
were significantly larger than 0 at all positions examined.

Z-DNA motif identification
Z-DNA motifs were identified as alternating purine–pyrimidine tracts 
of at least 10 bp. Specifically, G was followed by C or T for at least 10 bp58. 
For the definition of (CA)n repeats, we used (CA)n repeats to represent 
(CA/TG)n repeats in the main text as (TG)n on one strand is (CA)n on the 
other strand. If (TG)n repeats occurred in some examples, we also used 
(CA)n repeats to describe the result. For example, the (CA)n repeat at 
promoter of Pglyrp4 in Extended Data Fig. 2a was a (TG)n repeat.

Weakly expressed genes
In the analyses shown in Fig. 1g,h, we focused on weakly expressed 
genes because both previous1,59,60 and the current study found that 
AIRE upregulates the expression primarily of genes that have low basal 
expression levels before its action. We defined weakly expressed genes 
as those with a TPM < 0.35 in mTECs from Aire-KO mice (n = 4,537). We 
chose the threshold 0.35 because 50% of AIRE-induced genes have an 
Aire-KO TPM < 0.35 (n = 1,563).

Mice
All mice were housed and bred under specific-pathogen-free condi-
tions at the Harvard Medical School Center for Animal Resources and 
Comparative Medicine (Institutional Animal Care and Use Committee 
protocol IS00001257).

All experimental mice were 4–6-week-old female mice. The AIRE- 
deficient mice were described previously1. Littermates were routinely 
used for WT and KO comparisons. C57BL/6J (B6) and NOD/ShiLtJ (NOD) 
mice with Aire-driven expression of Igrp-GFP (Adig)61 were provided by 
M. Anderson and were appropriately bred to generate Aire-GFP+Aire+/+ 
and Aire-GFP+Aire−/− littermates on the B6, NOD or B6/NOD F1 hybrid 
backgrounds. CAST/EiJ (CAST) mice were purchased from Jackson 
Laboratory and bred to B6 mice to generate B6/CAST F1 hybrids.  
Foxn1cre and Nfe2l2flox/flox mice were also purchased from Jackson Labora-
tory and were appropriately bred to generate Foxn1creNfe2l2flox/flox and 
Foxn1creNfe2l2+/+ littermates.

For experiments that used spermidine to enhance Z-DNA formation, 
4-week-old B6 Aire+/+ and Aire−/− mice were intraperitoneally injected 
with 15 mg per kg spermidine (Sigma-Aldrich) in PBS for seven consecu-
tive days. For experiments that used topotecan to stabilize TOP1 bind-
ing, 4-week-old B6 Aire+/+ and Aire−/− mice were intraperitoneally injected 
with 0.5 mg per kg topotecan (Sigma-Aldrich) dissolved in DMSO for 
three consecutive days. Mice under different intraperitoneal injec-
tions were randomly allocated into experimental and control groups.

Isolation, sorting and analysis of thymus cells
Thymus tissues from individual female mice were collected in Dul-
becco’s modified Eagle medium (DMEM; Gibco) supplemented with 2% 
fetal bovine serum and 25 mM HEPES (basic medium) and minced with 
scissors. The fragments were then digested for 20 min with 0.5 mg ml−1 
collagenase (Sigma-Aldrich) and 0.2 mg ml−1 DNase (Sigma-Aldrich), 
then with collagenase/dispase (Roche) and 0.2 mg ml−1 DNase 
(Sigma-Aldrich) for 15 min. CD45+ cells were depleted by magnetic- 
activated cell sorting (MACS) with CD45 MicroBeads (Miltenyi).  
For mice on the B6 and B6/CAST background, cells were stained with 
the following primary antibodies: MHC-II-APC (107614, BioLegend), 
Ly51-PE (108308, BioLegend); CD45-PE/Cy7 (103114, BioLegend). For 
mice on the NOD and B6/NOD background, cells were stained with: 
MHC-II-PE (205308, BioLegend), Ly51-Alexa Fluor 647 (108312, Bio-
Legend); CD45-PE/Cy7 (103114, BioLegend). Cells were stained in the 
basic medium. 4′,6-diamino-2-phenylindole (DAPI) was added before 
sorting to exclude dead cells. For F1-hybrid sequencing experiments, 
DAPI−CD45−Ly51lowMHC-IIhighGFPhigh mTECs from B6 homozygous, NOD 
homozygous or B6/NOD F1 mice were sorted on the FACSAria sorter 
(BD). For all other experiments, DAPI−CD45−Ly51lowMHC-IIhigh mTECs 
were sorted.

For flow cytometry analysis of thymocytes, the following primary 
antibodies were used: CD4-Brilliant Violet 605 (100548, BioLegend), 
CD8a-FITC (100706, BioLegend), CD19-APC (115512, BioLegend). For 
flow cytometry analysis of Z-DNA formation in mTECs, the anti-Z DNA 
antibody (ab2079, Abcam) was used.

Mapping of F1 hybrid sequencing reads
We took an unbiased diploid genome alignment strategy to resolve the 
origin of each read from an F1-hybrid sequencing experiment5,62,63. In 
brief, we obtained the SNP and indel information for NOD and CAST 
genome from the Mouse-Genome Project14, and then modified the B6 
genome (mm10) to obtain pseudo-NOD and pseudo-CAST genomes. 
Sequencing reads were aligned in parallel to both the B6 and the 
pseudo-NOD or pseudo-CAST genomes. As two alignments for each 
read were under different coordinate systems, which impeded their 
direct comparison, we converted the coordinates of alignments in 
the pseudo-genomes back to the B6 coordinate system. The read was 
then assigned to the genome where it was uniquely mapped or had 
a higher mapping score. A read was randomly assigned to the B6 or 
another genome (NOD or CAST) if it had identical mapping scores for 
both genomes. The resulting alignment file (BAM) contains genome 
assignment information for each read, and also has tag indicating how 
the origin of the read was determined. For genetic-variant-containing 
reads, they were assigned to a genome in an allele-specific manner. For 



reads not covering genetic variants, they were randomly assigned to a 
genome because of the identical mapping scores.

Statistical testing of allelic imbalance
Only reads overlapping any high-confidence SNP or indel within a 
gene (RNA-seq), OCR (ATAC–seq) or DSB hotspot (BLISS) were con-
sidered when testing for allelic imbalance. We counted the number of 
variant-overlapping reads from the reference genome (B6), and those 
from the alternative genome (NOD or CAST), respectively, for every 
gene, OCR or DSB hotspot using bcftools64 (v.1.9). Allelically imbal-
anced regions were identified by modelling allele-specific read-count 
using the beta-binomial distribution62,65. Specifically, we assumed 
that the probability of having xi reads being from the reference or 
alternative genome for region i followed the beta-binomial distribu-
tion xi ∼ beta-binomial(ni,pi,θi) where ni is the total number of allele- 
specific reads for region i, pi indicates the probability of a read being 
from the reference or alternative genome, and θi captures the overdis
persion in read count data. For a perfectly balanced region i, pi = 0.5 
(null hypothesis). An allelically imbalanced region was identified if pi 
was significantly larger or smaller than 0.5. The Benjamini–Hochberg 
procedure was used to calculate the false-discovery rate.

CIS-BP database
The CIS-BP database66 is an online database of TF-binding motifs. It cur-
rently hosts data for more than 700 species, over 300 TF families and 
a total of more than 390,000 TFs. The binding-motif data came from 
over 70 sources, including Transfac, JASPAR and HOCOMOCO, which 
are frequently used in TF-binding motif analyses. For Mus musculus, 
the CIS-BP database contains data for 938 TF-binding motifs.

Motif analysis for allelic imbalance
For imbalanced OCRs and DSB hotspots, the alternative-allele (NOD 
or CAST) sequences were obtained by modifying the corresponding 
B6-allele sequences using known SNPs and indels14. We used FIMO67 
from MEME suite (v.5.4.1) to scan the peak sequences of both the ref-
erence and alternative allele for occurrences of TF-binding motifs 
(match P value < 1 × 10−4) in the CIS-BP database66. The coordinates of 
motifs found in the alternative genome were then converted back to 
the B6 coordinate system so that the scanning results for two alleles 
could be merged. We next repeated the following analysis for every 
TF-binding motif: (1) assign each imbalanced peak to the allele where it 
had a stronger match as indicated by a smaller FIMO match P value for 
the particular TF-binding motif; (2) use the nonparametric Wilcoxon 
rank-sum test to examine whether the allelic ratios of ATAC–seq or BLISS 
reads from peaks having stronger motif matches on the reference allele 
were significantly different from those of peaks with stronger motif 
matches on the alternative allele. De novo motif analysis for imbalanced 
OCRs was conducted using STREME68 (P < 0.05; minimum width,8; 
maximum width, 20).

RNA-seq library preparation
For each sample, 1,000 cells were sorted directly into the lysis buffer 
(5 μl TCL buffer (Qiagen) supplemented with 1% 2-mercaptoethanol 
(Sigma-Aldrich)). Libraries were constructed according to the 
Smart-seq2 RNA-seq library preparation protocol, and were then 
sequenced by the Broad Genomics Platform, according to the standard 
ImmGen ultra-low-input RNA-seq protocol (https://www.immgen.org/).

RNA-seq analysis
For non-F1-hybrid RNA-seq, paired-end RNA-seq reads were aligned 
to the mm10 genome using STAR69. Samples with fewer than 8,000 
genes that have more than 10 reads, medium transcript integrity 
number across all transcripts smaller than 45 or poor intrareplicate 
correlation were removed from the downstream analyses. Pearson 
correlations between replicates were calculated using the TPM value 

output by Kallisto70 (quant, v.0.45.1). MA plots were generated using the 
log2-transformed fold change and the mean of normalized read counts 
across all samples for each gene calculated by DESeq271 (low expressed 
genes were removed; v.1.22.2). Differential expression analyses were 
performed using DESeq2. For F1-hybrid RNA-seq experiments, quality 
control was performed using Sickle (default settings; v.1.33; https://
github.com/najoshi/sickle) to remove low-quality reads. Paired-end 
RNA-seq reads were aligned to the corresponding reference or alterna-
tive genome using Tophat272 (v.2.1.1). Only paired-end reads mapped 
to the single unique genomic location were retained for downstream 
analysis (SAMtools73; v.1.3.1). Allele-specific read counts were obtained 
as described above. Gene annotations for the B6 and NOD genome were 
downloaded from Ensembl release 102 based on the mouse genome 
assembly GRCm38.

scRNA-seq library preparation
mTEChi and post-AIRE mTEClo were sorted from 4–6-week-old female 
mice based on the gating strategies reported before42. Samples were 
hashed using the TotalSeq-A anti-mouse (anti-CD45/MHC class I) 
hashtags (BioLegend). Cells were then submitted to the Broad Insti-
tute Genomics Platform for encapsulation and library preparation 
following 10x Genomics protocols.

scRNA-seq analysis
Sequencing reads were demultiplexed, aligned and assigned to cells, 
and transcript-by-cell matrices were generated using Cell Ranger. 
CITE-seq-count was used to compute the hash-by-cell matrices. The 
downstream analyses were largely performed using the Seurat pack-
age74 (v.4.3.0.1). In brief, hash counts were normalized using the centred 
log-ratio transformation, and cells were then assigned hash identities 
by high expression of a single hash. Cells negative for hashtag signals 
or with multiple hashes were removed. Next, cells with >10% mito-
chondrial counts or unique feature counts > 7,000 or unique feature 
count < 200 were removed. Gene expression data were then normal-
ized using the default method LogNormalize. The top 2,000 variable 
genes were selected using the variance-stabilizing transform (vst) 
method. After scaling the data, principal component analysis was per-
formed on the top variable genes. The top 50 principal components 
were retained based on jackstraw and elbow plots for constructing 
the (shared) nearest-neighbor graph (k.param=20). Cell clustering 
was first performed using the Louvain algorithm (resolution = 1.55). 
Then, the top 50 principal components were retained for running the 
UMAP dimensional reduction. Cell clusters expressing canonical T cell, 
B cell, myeloid, fibroblast or endothelial markers were removed due 
to contamination. Cell type annotation was performed on the basis of 
the expression of marker genes of AIRE-expressing, transit-amplifying, 
immature and post-AIRE mTECs.

ATAC–seq library preparation
For each ATAC–seq sample, around 15,000 mTECs from 4–6-week-old 
female mice were sorted into basic medium (described above) 
for ATAC–seq library preparation, according to the fast-ATAC–seq  
protocol75,76, which provides high-quality data with low cell input. In 
brief, cells were centrifuged at 4 °C and washed with 1 ml PBS supple-
mented with protease inhibitor (Complete EDTA-free protease inhibitor 
cocktail, Roche). Then, 10 μl Tn5 transposase mixture was added to 
resuspend the cell pellet on ice (10 μl Tn5 transposase mixture: 5 μl 2× 
Tagment DNA buffer, 0.5 μl Tagment DNA enzyme from the Nextera 
DNA Library Preparation Kit (Illumina), 4.4 μl nuclease-free water, 
0.2 mg ml−1 digitonin (G9441, Promega)). Cells were incubated for 
30 min at 37 °C with agitation. Transposed DNA fragments were puri-
fied using the MinElute Reaction Cleanup Kit (QIAGEN). Two rounds of 
PCR were performed to generate the library as described in the ImmGen 
ATAC–seq protocol76. After the initial round of PCR with 7 cycles, small 
DNA fragments were size-selected and purified using the Agencourt 
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AMPure XP beads (Beckman Coulter) followed by a second round of PCR 
with 10 cycles. Amplified libraries were purified by AMPure XP beads 
(×1.8 vol.) and sequenced on the NextSeq 500 instrument (Illumina) to 
generate paired-end reads (41 + 40 bp) at the Harvard Medical School 
Biopolymers Facility.

ATAC–seq analysis
After removing low-quality reads using Sickle and trimming adapter 
sequences using cutadapt77 (v.1.14), we aligned ATAC–seq reads to 
the corresponding genome (mm10 reference genome, pseudo-NOD 
genome or pseudo-CAST genome) using bowtie278 (v.2.3.4.3) with 
the following parameters: -X 1000 --fr --no-mixed --no-discordant. 
Non-uniquely mapped and mitochondrial DNA reads were removed 
using a combination of SAMtools functions. PCR duplicates were 
removed using Picard (MarkDuplicates, v.2.8.0; https://broadinsti-
tute.github.io/picard/). OCRs for individual samples were identi-
fied using MACS279 (callpeak, v.2.1.1.20160309) with the following 
parameters: --keep-dup all --nomodel --shift -100 --extsize 200 -p 0.05. 
High-confidence, reproducible OCRs among replicates were then 
identified using the irreproducible discovery rate (IDR) framework80 
(v.2.0.2) with a global IDR < 0.05. OCRs overlapping ENCODE blacklisted 
regions were removed from downstream analyses using BEDTools81 
(v.2.27.1). To visualize individual ATAC–seq tracks using the Integra-
tive Genomics Viewer82, the alignment file (BAM file) was converted to 
the read-coverage file (BigWig file) using deepTools83 (bamCoverage, 
v.3.0.2). ATAC–seq profiles over various genomic regions (for example, 
TSSs) were generated using the function plotProfile of deepTools or 
using the ngs.plot84 (v.2.47.1). For F1 ATAC–seq, allele-specific read 
counts for OCRs were obtained as described above.

BLISS library preparation
We followed the suspension-cell BLISS protocol85, which is an adapta-
tion of the original BLISS protocol86 for non-adherent cells. The entire 
library preparation process took around 4 days. In brief, on day 1, for 
each sample, around 100,000 mTECs from 4–6-week-old female mice 
were sorted into PBS. Cells were fixed in 4% paraformaldehyde (15710, 
Electron Microscopy Sciences) for 10 min at room temperature on a 
roller shaker. Formaldehyde was quenched with glycine. Fixed cells 
were then washed twice using ice-cold PBS. For permeabilization, fixed 
cells were subjected to two sequential lysis using lysis buffer 1 (10 mM 
Tris-HCl, 10 mM NaCl, 1 mM EDTA, 0.2% Triton X-100, pH 8) and lysis 
buffer 2 (10 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA, 0.3% SDS, pH 8). 
After permeabilization, DSB ends were blunted using the Quick Blunt-
ing Kit (E1201L, NEB) for 1 h at room temperature, which was followed 
by in situ DSB ligation of BLISS adapters using T4 DNA ligase (M0202M, 
NEB) for around 16 h (overnight) at 16 °C. On day 2, genomic DNAs were 
reverse cross-linked and extracted using DNA extraction buffer (10 mM 
Tris-HCl, 100 mM NaCl, 50 mM EDTA, 1% SDS, 1 mg ml−1 proteinase K, 
pH 8) at 55 °C for around 18 h (overnight) with shaking. On day 3, DNA 
was purified and then sonicated in 1× TE buffer using the Covaris M220 
ultrasonicator with the following setting: peak incident power 50, duty 
factor 10%, cycles per burst 200, time 70 s. After purification using 
Agencourt AMPure XP beads, DNA was in vitro transcribed using the 
MEGAscript T7 Transcription Kit (AM1333, Thermo Fisher Scientific) at 
37 °C for around 14 h (overnight). On day 4, genomic DNA was removed 
using DNase I (RNase-free) (AM2222, Thermo Fisher Scientific) followed 
by RNA purification using Agencourt RNAClean XP beads (Beckman 
Coulter). Libraries were then built through the following steps: Illumina 
RA3 adapter ligation using T4 RNA ligase 2, truncated KQ (M0373S, 
NEB) at 25 °C for 2 h; reverse transcription using SuperScript III reverse 
transcriptase (18080044, Thermo Fisher Scientific) at 50 °C for 1 h; 
library indexing and amplification using NEBNext High-Fidelity 2× 
PCR Master Mix (M0541S, NEB); DNA purification and size selection 
(300–800 bp) using Agencourt AMPure XP beads. All primers and 
adapters were custom synthesized by Integrated DNA Technologies 

based on sequences in the TruSeq Small RNA Library Preparation kit 
(Illumina). BLISS libraries were sequenced on the NextSeq 500 instru-
ment (Illumina) to generate single-end reads (80 bp) at the Harvard 
Medical School Biopolymers Facility.

BLISS analysis
We used Cutadapt (v.2.5) to scan BLISS reads for matches of the 
expected 16 bp prefix (8 bp unique molecular identifier (UMI) + 8 bp 
sample barcode) in the BLISS adapters, allowing a maximum of one mis-
match. Only reads containing the 16 bp prefix were retained. Prefixes 
were then clipped using Cutadapt. Reads were aligned to the corre-
sponding genome (mm10 reference genome or pseudo-CAST genome) 
using bowtie2 (v.2.3.4.3). Only uniquely mapped reads were retained 
(SAMtools, v.1.3.1). PCR duplicates that had the same UMIs (allowing for 
a maximum of two mismatch) were removed using UMI-tools87 (dedup, 
v.1.0.1). DSBs independently generated at the same genomic location 
in different cells were retained because they had different UMIs. DSB 
hotspots, defined as peaks identified by HOMER88 (findPeaks, v.4.9) 
with fold enrichment > 1.5 and P < 1 × 10−5, were called for individual 
samples. DSB hotspots overlapping ENCODE blacklisted regions were 
removed from downstream analyses using BEDTools (v.2.27.1). DSB 
hotspots in replicates were merged using BEDOPS89 (v.2.4.30) functions 
and only those occurring in both replicates were retained for further 
analyses. BLISS profiles over various genomic regions were generated 
as for ATAC–seq. For B6/CAST F1 BLISS, allele-specific read counts for 
DSB hotspots were obtained as described above. For differential DSB 
hotspot analyses, DSB hotspots were called using MACS279 with -p set to 
0.1. High-confidence, reproducible peaks among replicates were then 
identified using the IDR framework80 (v.2.0.2) with a global IDR < 0.1. 
Htseq-count was used to count the number of reads in each DSB  
hotspot. DESeq2 was then used to perform the differential analyses.

ChIP–seq library preparation
Pol II ChIP–seq libraries were constructed as described previously9, and 
were sequenced on the HiSeq 2500 instrument (Illumina) to generate 
single-end reads (50 bp). For Z-DNA ChIP–seq, 300,000–500,000 
mTECs from 4–6-week-old female mouse were sorted and pooled for 
each sample. In brief, cells were fixed with 1% formaldehyde (28906, 
Thermo Fisher Scientific) for 10 min at room temperature with rota-
tion, followed by quenching using 0.125 M glycine for 5 min at room 
temperature. After washing using ice-cold PBS supplemented with 
protease inhibitor (Complete EDTA-free protease inhibitor cocktail, 
Roche), cells were resuspended in lysis buffer (10 mM Tris-HCl pH 8.0, 
140 mM NaCl, 1 mM EDTA, 0.1% SDS, 0.1% sodium deoxycholate, 1% 
Triton X-100) supplemented with protease inhibitor on ice for 10 min. 
Chromatin was then sonicated on the Covaris M220 ultrasonicator with 
the following settings: peak incident power 50, duty factor 10%, cycles 
per burst 200, time 8 min. Lysate was centrifuged for 10 min at 14,000g 
at 4 °C. An input sample was preserved from the supernatant. The rest 
of the supernatant was incubated with 2 μg of anti-Z-DNA/Z-RNA90 
(Z22) (Ab00783-23.0, Absolute Antibody) or rabbit IgG (2729, Cell 
Signaling) antibodies precoupled to protein A Dynabeads (Invitrogen) 
on a rotator overnight at 4 °C. The next day, the beads were washed 
twice sequentially on a pre-cooled magnet (Invitrogen) using wash 
buffer 1 (10 mM Tris-HCl pH 8.0, 140 mM NaCl, 1 mM EDTA, 0.1% SDS, 
0.1% sodium deoxycholate, 1% Triton X-100), wash buffer 2 (10 mM 
Tris-HCl pH 8.0, 500 mM NaCl, 1 mM EDTA, 0.1% SDS, 0.1% sodium 
deoxycholate, 1% Triton X-100), wash buffer 3 (10 mM Tris-HCl pH 8.0, 
250 mM LiCl, 1 mM EDTA, 0.5% NP-40, 0.5% sodium deoxycholate) and 
1× TE. Immunoprecipitated chromatin material on beads was treated 
with 1 µg DNase-free RNase (Roche) for 30 min at 37 °C. Beads were then 
incubated with 50 μl elution buffer (10 mM Tris-HCl pH 8.0, 300 mM 
NaCl, 5 mM EDTA, 0.4% SDS) containing 2 μl proteinase K (NEB) at 
55 °C for 1 h and 65 °C overnight to de-cross-link. The next day, DNA 
was purified using the MinElute Reaction Cleanup Kit (QIAGEN), and 
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the library was prepared using the NEBNext Ultra II DNA Library Prep 
Kit for Illumina (NEB) according to the manufacturer’s protocol. After 
purification using AMPure XP beads, the libraries were sequenced on 
the NextSeq 500 instrument (Illumina) to generate paired-end reads 
(42 + 42 bp).

ChIPmentation library preparation
For ChIPmentation, each library was constructed using around 50,000 
mTECs sorted from a 4–6-week-old female mouse. ChIPmentation 
libraries were prepared as described previously91 with some adjust-
ments. In brief, cells were prepared according to the same steps as for 
ChIP–seq library preparation until the wash step except that (1) the 
antibodies used were anti-AIRE (14-5934-82, eBioscience) and anti-NELF 
(ab170104, Abcam); (2) the sonication time was 5 min; and (3) the last 
wash was performed using 10 mM Tris-HCl pH 8.0 instead of 1× TE. 
After washing, the beads were then resuspended in 25 μl tagmenta-
tion reaction mix with 1 μl Tn5 transposase (Illumina) added, and were 
incubated at 37 °C for 5 min. After removing the tagmentation reaction 
mix, the beads were washed twice with wash buffer 1 and once with 1× 
TE. They were then incubated with 50 μl elution buffer (10 mM Tris-HCl 
pH 8.0, 300 mM NaCl, 5 mM EDTA, 0.4% SDS) containing 2 μl proteinase 
K (NEB) at 55 °C for 1 h and 65 °C for 8 h to de-cross-link. DNA was puri-
fied using the MinElute Reaction Cleanup Kit (QIAGEN). Libraries were 
indexed and amplified using the NEBNext High-Fidelity 2× PCR Master 
Mix (M0541S, NEB) and ATAC–seq primers92, followed by purification 
using AMPure XP beads and sequencing as for ATAC–seq.

ChIPmentation and ChIP–seq analysis
Alignment of ChIPmentation reads was performed as for ATAC–seq 
reads: trimming low-quality reads, clipping adapters, mapping to the 
genome, retaining only uniquely mapped reads and removing PCR 
duplicates (see above). Read-alignment of ChIP–seq datasets was 
performed as for ATAC–seq except that the adapter-trimming step 
trimmed different sequences. ChIPmentation and ChIP–seq profiles 
over various genomic regions were generated also as for ATAC–seq (see 
above). IgG control for Pol II ChIP–seq of Aire-KO mTECs came from a 
previous study9. ChIPmentation and ChIP–seq signals over promoters, 
defined as −1,000 to 200 bp relative to the TSS, of AIRE-induced and 
AIRE-neutral genes as in Fig. 4d,e and Extended Data Fig. 8c were calcu-
lated using the HOMER (v.4.9) script ‘annotatePeaks.pl’. Z-DNA ChIP–
seq peaks were identified using MACS279 (callpeak, v.2.1.1.20160309) 
with the following parameters: --keep-dup all -f BAMPE -c ctrl_bam -p 
0.1. High-confidence, reproducible peaks among replicates were then 
identified using the IDR framework80 (v.2.0.2) with a global IDR < 0.05. 
Peaks overlapping ENCODE blacklisted regions were removed from 
downstream analyses using BEDTools81 (v.2.27.1).

CUT&Tag library preparation
Libraries were prepared according to a protocol described previously93. 
In brief, for each sample, 50,000–80,000 mTECs from a female mouse 
were sorted. After washing in wash buffer 1 (20 mM HEPES pH 7.5, 
150 mM NaCl, 0.5 mM spermidine, complete EDTA-free protease inhibi-
tor cocktail), cells were bound to the concanavalin A beads (Bangs 
Laboratories), followed by incubation with 1:50 primary antibodies 
(anti-RNA polymerase II phosphorylated at Ser5 (ab5131, Abcam)) in 
wash buffer 1 supplemented with 0.05% digitonin, 2 mM EDTA and 0.1% 
BSA at 4 °C overnight. The next day, cells were incubated with 1:100 
secondary antibody (guinea pig anti-rabbit IgG, 611-201-122, Rockland) 
in wash buffer 1 supplemented with 0.05% digitonin at room tempera-
ture for 1 h on a rotator. After washing, cells were mixed with 1:200 
pA-Tn5 (124601, Addgene; purified in house) in wash buffer 2 (20 mM 
HEPES pH 7.5, 300 mM NaCl, 0.5 mM spermidine, complete EDTA-free 
protease inhibitor cocktail) plus 0.01% digitonin at room temperature 
for 1 h on a rotator. Cells were then washed twice, followed by tagmen-
tation in wash buffer 2 plus 0.01% digitonin and 10 mM MgCl2 at 37 °C 

for 1 h. DNA was solubilized by adding 16.7 mM EDTA, 0.1% SDS and  
0.167 mg ml−1 proteinase K to each sample and incubating at 55 °C  
for 1 h. DNA was phenol–chloroform-extracted and amplified using the 
NEBNext High-Fidelity 2× PCR Master Mix (M0541S, NEB) and ATAC–seq 
primers92. After purification by AMPure XP beads (×1.3 vol.), the libra
ries were sequenced as described for ATAC–seq.

CUT&Tag analysis
Quality control, adapter trimming, read alignment and generation 
of profile plots were performed as described for the ATAC–seq data 
(see above) except that (1) the bowtie2 parameters used were --local 
--very-sensitive --no-mixed --no-discordant -X 1000 --fr; and (2) reads 
were aligned to the Escherichia coli genome in parallel to quantify the 
number of carry-over reads from pA-Tn5.

Z-DNA and NFE2L2-binding motif distribution at DSB hotspots
Z-DNA motifs were identified as alternating purine–pyrimidine tracts 
of at least 10 bp as described above. NFE2L2-binding motifs in the DSB 
hotspot were identified using FIMO67 from the MEME suite (v.5.4.1). 
The length of each DSB hotspot was bucketized into 100 position bins. 
For each position bin of all the DSB hotspots, we counted how many 
Z-DNA and NFE2L2-binding motifs fell into that bin, and then used the 
100 counts to generate the density plots and heat maps as shown in 
Extended Data Fig. 9c. Curve fitting was performed using polynomial 
regression.

BRG1 ATAC–seq analysis
GC-content- and quantile-normalized ATAC–seq data for mTEClo and 
mTEChi from Brg1-WT and Brg1-cKO mice were obtained from the Gene 
Expression Omnibus (GEO) under accession code GSE102526. OCRs 
upregulated by BRG1 were defined as (1) mTEChi Brg1-WT ATAC–seq/
mTEClo Brg1-WT ATAC–seq > 1.5; and (2) mTEChi Brg1-WT ATAC–seq/
mTEChi Brg1-cKO ATAC–seq > 1.5. Unchanged OCRs were defined as 
(1) mTEChi Brg1-WT ATAC–seq/mTEClo Brg1-WT ATAC–seq > 1.5; and 
(2) 0.9 < mTEChi Brg1-WT ATAC–seq/mTEChi Brg1-cKO ATAC–seq < 1.1.

KEGG enrichment pathway analysis
The KEGG pathway analysis for differentially expressed genes between 
mTECs from Nfe2l2-KO and control mTECs was performed using the 
function ‘run_KEGG’ of the R package clusterProfiler. The cut-off for 
the enriched pathways was 0.05 for the adjusted P value.

Statistical analysis
De novo motif and known TF-motif-enrichment P values and E values 
were defined and calculated using the MEME suite, P values for bulk 
RNA-seq differentially expressed genes were calculated in DESeq2 
using the Wald test, adjusted P values for enriched KEGG pathways were 
calculated in clusterProfiler using the Benjamini–Hochberg procedure. 
Box plots show the median (centre line) and the first and third quartiles 
(box limits), and the upper and lower whiskers of the box plots extended 
from the hinges to ±1.5 × interquartile range. Other statistical tests were 
performed using R as specified in the figure legends.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All sequencing data reported in this Article have been deposited as 
a SuperSeries at the GEO under accession code GSE224557. Specifi-
cally, the ATAC–seq, BLISS, ChIP–seq, ChIPmentation, CUT&Tag, bulk 
RNA-seq and scRNA-seq data are available under accession codes 
GSE224551, GSE224552, GSE224553, GSE224554, GSE224555, GSE224556 
and GSE253215, respectively. Public datasets used in this article are as 
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follows: GSE92594 (ATAC–seq for WT and Aire-KO mTECs), GSE92597 
(RNA Pol II, AIRE and IgG ChIP–seq for WT mTECs), GSE180937 (MED1 
and IgG ChIP–seq for WT mTECs) and GSE102526 (ATAC–seq for mTECs 
from Brg1-WT and Brg1-cKO mice). Source data are provided with  
this paper.

Code availability
Code and scripts used in this study are available at Zenodo (https://
doi.org/10.5281/zenodo.10472904).
 
46.	 Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. BERT: pre-training of deep bidirectional 

transformers for language understanding. In Proc. NAACL-HLT (eds Burstein, J., Doran, C. 
& Solorio, T.) 4171–4186 (Association for Computational Linguistics, 2019).

47.	 Avsec, Z. et al. Effective gene expression prediction from sequence by integrating 
long-range interactions. Nat. Methods 18, 1196–1203 (2021).

48.	 Kelley, D. R. Cross-species regulatory sequence activity prediction. PLoS Comput. Biol. 
16, e1008050 (2020).

49.	 Moore, J. E. et al. Expanded encyclopaedias of DNA elements in the human and mouse 
genomes. Nature 583, 699–710 (2020).

50.	 Forrest, A. R. et al. A promoter-level mammalian expression atlas. Nature 507, 462–470 
(2014).

51.	 Hendrycks, D. & Gimpel, K. Gaussian error linear units (GELUs). Preprint at arxiv.org/abs/ 
1606.08415 (2020).

52.	 Jaganathan, K. et al. Predicting splicing from primary sequence with deep learning. Cell 
176, 535–548 (2019).

53.	 He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proc. 
2016 IEEE Conference on Computer Vision and Pattern Recognition 770–778 (IEEE, Las 
Vegas, 2016).

54.	 Simonyan, K., Vedaldi, A. & Zisserman, A. Deep inside convolutional networks: visualising 
image classification models and saliency maps. Preprint at arxiv.org/abs/1312.6034 
(2014).

55.	 Grant, C. E. & Bailey, T. L. XSTREME: comprehensive motif analysis of biological sequence 
datasets. Preprint at bioRxiv https://doi.org/10.1101/2021.09.02.458722 (2021).

56.	 Bailey, T. L., Johnson, J., Grant, C. E. & Noble, W. S. The MEME suite. Nucleic Acids Res. 43, 
W39–W49 (2015).

57.	 Zhou, J. & Troyanskaya, O. G. Predicting effects of noncoding variants with deep 
learning-based sequence model. Nat. Methods 12, 931–934 (2015).

58.	 Cer, R. Z. et al. Non-B DB v2.0: a database of predicted non-B DNA-forming motifs and its 
associated tools. Nucleic Acids Res. 41, D94–D100 (2013).

59.	 Derbinski, J. et al. Promiscuous gene expression patterns in single medullary thymic 
epithelial cells argue for a stochastic mechanism. Proc. Natl Acad. Sci. USA 105, 657–662 
(2008).

60.	 Peterson, P., Org, T. & Rebane, A. Transcriptional regulation by AIRE: molecular 
mechanisms of central tolerance. Nat. Rev. Immunol. 8, 948–957 (2008).

61.	 Gardner, J. M. et al. Deletional tolerance mediated by extrathymic Aire-expressing cells. 
Science 321, 843–847 (2008).

62.	 Huang, S. et al. A novel multi-alignment pipeline for high-throughput sequencing data. 
Database 2014, bau057 (2014).

63.	 van der Veeken, J. et al. The transcription factor Foxp3 shapes regulatory T cell identity by 
tuning the activity of trans-acting intermediaries. Immunity. 53, 971–984 (2020).

64.	 Li, H. A statistical framework for SNP calling, mutation discovery, association mapping 
and population genetical parameter estimation from sequencing data. Bioinformatics. 
27, 2987–2993 (2011).

65.	 de Santiago, I. et al. BaalChIP: Bayesian analysis of allele-specific transcription factor 
binding in cancer genomes. Genome Biol. 18, 39 (2017).

66.	 Weirauch, M. T. et al. Determination and inference of eukaryotic transcription factor 
sequence specificity. Cell 158, 1431–1443 (2014).

67.	 Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given motif. 
Bioinformatics. 27, 1017–1018 (2011).

68.	 Bailey, T. L. STREME: accurate and versatile sequence motif discovery. Bioinformatics. 37, 
2834–2840 (2021).

69.	 Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 29, 15–21 (2013).
70.	 Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq 

quantification. Nat. Biotechnol. 34, 525–527 (2016).
71.	 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion 

for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
72.	 Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, 

deletions and gene fusions. Genome Biol. 14, R36 (2013).
73.	 Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 25, 

2078–2079 (2009).

74.	 Satija, R. et al. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 
33, 495–502 (2015).

75.	 Corces, M. R. et al. Lineage-specific and single-cell chromatin accessibility charts human 
hematopoiesis and leukemia evolution. Nat. Genet. 48, 1193–1203 (2016).

76.	 Yoshida, H. et al. The cis-regulatory atlas of the mouse immune system. Cell 176, 897–912 
(2019).

77.	 Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing 
reads. EMBnet J. https://doi.org/10.14806/ej.17.1.200 (2015).

78.	 Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 
9, 357–359 (2012).

79.	 Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).
80.	 Qunhua, L., James, B. B., Haiyan, H. & Peter, J. B. Measuring reproducibility of 

high-throughput experiments. Ann. Appl. Stat. 5, 1752–1779 (2011).
81.	 Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic 

features. Bioinformatics. 26, 841–842 (2010).
82.	 Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).
83.	 Ramirez, F. et al. deepTools: a flexible platform for exploring deep-sequencing data. 

Nucleic Acids Res. 42, W187–W191 (2014).
84.	 Shen, L., Shao, N., Liu, X. & Nestler, E. ngs.plot: quick mining and visualization of 

next-generation sequencing data by integrating genomic databases. BMC Genom. 15, 
284 (2014).

85.	 Gothe, H. J. et al. Spatial chromosome folding and active transcription drive  
DNA fragility and formation of oncogenic MLL translocations. Mol. Cell 75, 267–283 
(2019).

86.	 Yan, W. X. et al. BLISS is a versatile and quantitative method for genome-wide profiling of 
DNA double-strand breaks. Nat. Commun. 8, 15058 (2017).

87.	 Smith, T., Heger, A. & Sudbery, I. UMI-tools: modeling sequencing errors in Unique 
Molecular Identifiers to improve quantification accuracy. Genome Res. 27, 491–499 
(2017).

88.	 Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime 
cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 
576–589 (2010).

89.	 Neph, S. et al. BEDOPS: high-performance genomic feature operations. Bioinformatics. 
28, 1919–1920 (2012).

90.	 Möller, A. et al. Monoclonal antibodies recognize different parts of Z-DNA. J. Biol. Chem. 
257, 12081–12085 (1982).

91.	 Schmidl, C., Rendeiro, A. F., Sheffield, N. C. & Bock, C. ChIPmentation: fast, robust, 
low-input ChIP-seq for histones and transcription factors. Nat. Methods 12, 963–965 
(2015).

92.	 Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory 
variation. Nature 523, 486–490 (2015).

93.	 Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and 
single cells. Nat. Commun. 10, 1930 (2019).

94.	 Bansal, K. et al. Aire regulates chromatin looping by evicting CTCF from domain 
boundaries and favoring accumulation of cohesin on superenhancers. Proc. Natl Acad. 
Sci. USA 118, e2110991118 (2021).

Acknowledgements We thank A. Baysov, J. Lee, I. Magill and the members of the Broad 
Genomics Platform for RNA-seq and scRNA-seq; the staff at the HMS Biopolymers Facility for 
all other sequencing; the members of the HMS Immunology Flow Core; L. Du and the staff at 
the HMS Transgenic Mouse Core; K. Hattori and A. Ortiz-Lopez for experimental assistance;  
L. Yang and B. Vijaykumar for computational help; C. Laplace for graphics; K. Chowdhary  
and D. Michelson for discussions; M. Anderson for providing the NOD mice with Aire-driven 
expression of IGRP–GFP; and A. Herbert for drawing our attention to the Z22 monoclonal 
antibody. This work was supported by NIH grant R01AI088204 (to D.M.). Y.F. is in part 
supported by the Harvard Molecules, Cells and Organisms Training Program. K.B. is supported 
by the Department of Biotechnology/Wellcome Trust India Alliance Intermediate Fellowship 
(IA/I/19/1/504276).

Author contributions Y.F. and D.M. conceived the study. Y.F. designed and performed all 
experiments except for the Pol II ChIP–seq. Y.F. performed all data analysis with supervision 
from D.M., C.B. and S.M. K.B. performed the Pol II ChIP–seq of mTECs from Aire-KO mice.  
Y.F. and D.M. wrote the manuscript, which was edited by all of the authors.

Competing interests The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at 
https://doi.org/10.1038/s41586-024-07169-7.
Correspondence and requests for materials should be addressed to Diane Mathis.
Peer review information Nature thanks Alan Herbert and the other, anonymous, reviewer(s) for 
their contribution to the peer review of this work.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92594
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92597
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE180937
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE102526
https://doi.org/10.5281/zenodo.10472904
https://doi.org/10.5281/zenodo.10472904
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1312.6034
https://doi.org/10.1101/2021.09.02.458722
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.1038/s41586-024-07169-7
http://www.nature.com/reprints


Extended Data Fig. 1 | Performance of the pre-trained CNN model.  
a, Schematics of the CNN model for pre-training and fine-tuning. The first 
section of the main body is comprised of convolutional layers to extract 
relevant DNA sequence motifs. The following section has repeated blocks 
containing dilated convolutional layers with residual skip connections, to 
spread information and model long-range interactions in the input DNA 
sequences. AIRE-induced and expression-matched AIRE-neutral gene lists have 
been described3,9. Briefly, AIRE-induced genes were defined as Aire+/+/Aire−/− > 2 
and AIRE-neutral genes were Aire+/+/Aire−/− > 0.9 and <1.1, based on bulk RNA-seq 
data from ref. 3. b, Exemplar true versus predicted profiles over a randomly 
selected sequence from the test set. Profiles for 15 sequencing datasets are 

shown. c, Boxplot showing the Pearson correlations between the predicted  
and true sequencing profiles of test set sequences for the sequencing datasets 
used for the pre-training, including DNase-seq, ATAC-seq and ChIP-seq.  
d, Model evaluation on four datasets: a test set and validation set from the B6 
genome, and two test sets from the NOD genome: (1) containing SNPs/Indels 
compared with counterparts in the B6 genome, and (2) derived from NOD-specific 
genes (in order to prevent data leakage during prediction). e, Bar plot comparing 
the performances of randomly initialized model and pre-trained model on the 
test set from the B6 genome. SNPs: single-nucleotide polymorphisms; Indels: 
insertions and deletions; AIG, AIRE-induced gene; ANG: AIRE-neutral gene.
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Extended Data Fig. 2 | Additional analysis using the fine-tuned CNN model 
and Z-DNABERT, related to Fig. 1. a, Contribution score profiles for AIRE- 
induced genes whose largest-positive-gradient regions contained (CA)n 
repeats (left) or NFE2–MAF-binding motifs (right). b, Motifs enriched in the 
regions (50 bp in length) with the largest ISM scores. c, Motifs that are relatively 
more enriched in extended-promoter sequences of AIRE-induced genes than 
AIRE-neutral genes (E-value < 0.05). The MEME suite was used to identify the 
enriched motifs for panel b and c. d, Example ISM score heatmaps for (CA)n 
repeats in AIRE-induced gene promoters. Each of the three rows shows results 

for one possible substitution in the order of A- > C- > G- > T from top to bottom. 
Red (positive ISM score) indicates that substitution of the original nucleotide 
leads to a decreased average Z-DNA score across the stretch of the (CA)n repeat; 
Blue (negative ISM score) indicates the other way. e, Boxplot showing the 
distribution of ISM scores at various positions near the boundaries of (CA)n 
repeats in AIRE-induced gene promoters. For example, position 2 indicates the 
second nucleotides from both ends of a (CA)n repeat. p-values for panel e were 
calculated using the one-sample Wilcoxon Signed Rank Test (one-tailed).  
AIG, AIRE-induced gene.



Extended Data Fig. 3 | Strain-specific gene expression in mTECs was 
predominantly driven by cis-regulation. a,b, Cytofluorometric gating scheme 
for isolation of mTECs from B6 (a), NOD and F1 (b) mice. c, Rationale of the 
F1-hybrid analysis. d, Allelically imbalanced gene transcripts and OCRs in 
B6×NOD F1-hybrid mTECs. Red dots depict significantly imbalanced events 
with a false discovery rate (FDR) < 0.05. e, Correlation between the fold-changes 
in accessibility for mTEC OCRs in B6 versus NOD mice (x axis) and fold-changes 
in accessibility for OCRs (n = 23256) on the B6 versus NOD allele in mTECs of F1 
hybrids (y axis). Red dots depict significantly imbalanced OCRs (n = 3750).  
f, Correlation between the fold-changes in transcript levels for mTECs from B6 

versus NOD mTECs (x axis) and transcript fold-changes for the B6 versus NOD 
allele in mTECs of F1 hybrids (y axis). Only genes significantly differentially 
expressed in B6 and NOD mTECs are shown (adjusted p-value < 0.05, n = 248).  
g, Correlation between allelic biases in the expression of the nearest AIRE-induced 
gene (x axis) and in the accessibility of the OCR (y axis). The imbalanced OCR 
was assigned to an imbalanced AIRE-induced gene (n = 248) if 1) the OCR was 
located within 50,000 bp of the gene’s TSS and 2) the AIRE-induced gene was 
the OCR’s nearest gene. There were 156 imbalanced OCRs assigned to imbalanced 
AIGs. p-values according to panels e and g were from Spearman’s correlation. 
FC: fold-change. OCR: open chromatin region; TF: transcription factor.
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Extended Data Fig. 4 | Exemplar genetic variants associated with allelic 
imbalances in chromatin accessibility and gene expression. a,b, Examples 
of genetic variants of NFE2L2-binding motifs associated with imbalanced 

expression of AIRE-induced genes. c,d, Examples of genetic variants of Z-DNA 
motifs associated with allelic imbalances in the expression of an AIRE-induced 
gene. OCR: open chromatin region; WT: wild-type; Aire-KO: Aire knockout.



Extended Data Fig. 5 | Effect of spermidine on Z-DNA formation and thymic 
cell populations. a, Density plot showing the effect of spermidine vs control 
PBS injection on Z-DNA intensity in mTECs measured by flow cytometry using 
an anti-Z-DNA antibody. b, Representative cytofluorimetric plots and quantitative 

summary for mTECs of WT and Aire-KO mice treated with spermidine or  
control PBS. c, Cytofluorometric gating scheme for analyses of thymocyte 
compartments. d, Analogous plots to panel b for thymocyte compartments. 
Error bars, mean ± s.e.m. from n = 3 biological replicates. KO: Aire-KO.
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Extended Data Fig. 6 | Additional analysis of scRNA-seq of PBS-treated 
versus spermidine-treated mTECs, related to Fig. 3. a, Log2 ratio (M-values) 
versus log2 average (A-values) plots showing the effect of spermidine 
treatment on mTECs from wild-type mice. Red dots depict spermidine-specific 
AIRE-induced genes (FC > 2, p-value < 0.05). Dark grey dots depict AIRE-induced 
transcripts shared between mice injected with spermidine and PBS. b, Per- 
replicate UMAPs of scRNA-seq of mTEChi and post-AIRE mTEClo for PBS-treated 

and spermidine-treated Aire-WT mice. Each dot on the UMAPs is a single cell 
(n = 3184). Each number on the UMAPs indicates a cluster identified using 
Seurat. c, Merged UMAPs of scRNA-seq of mTEChi and post-AIRE mTEClo from 
PBS-treated (n = 2 biological replicates) and spermidine-treated (n = 2 
biological replicates) Aire-WT mice. mTEC subtypes were labeled. d, UMAPs 
showing the expression of Aire (left) and one MHC Class II gene (right).



Extended Data Fig. 7 | Additional analysis of BLISS in mTECs, related to 
Fig. 4. a, Boxplot comparing BLISS signals at Z-DNA ChIP-seq peaks that had 
low, medium or high Z-DNA ChIP-seq signals in mTECs from Aire-WT mice. Low: 
<25th percentile (n = 1508); Medium: 25th - 75th percentile (n = 3008); High: > 75th 
percentile (n = 1506). b, Boxplot comparing Aire-KO BLISS signals at promoters 
of AIRE-inducible (n = 1563) and expression-matched AIRE-neutral genes in 
Aire-KO mTECs (n = 1907). AIRE-inducible and AIRE-neutral genes were weakly 
expressed genes (Aire-KO TPM < 0.35) whose promoter DSB generation was 
detected by BLISS in mTECs from Aire-KO mice. c, Boxplot comparing the 
enrichment of Z-DNA motifs (left) at DSB hotspots upregulated by spermidine 

(n = 97) versus those unaffected by spermidine (n = 78). Analogous plot for 
CTCF-binding motifs is shown on the right. The number of motifs was 
normalized according to the length of the DSB hotspots. d, Correlation 
between genetic variation in CTCF-binding motifs and allelic imbalance  
in DSB generation. Individual lines indicate DSB hotspots with a stronger 
CTCF-binding motif match on the B6 allele (red, n = 60) or on the CAST allele 
(blue, n = 59). e, Analogous plot for (CA)n repeats (n = 38 for B6 and n = 51 for 
CAST). p-values for panels a-c were calculated using the Wilcoxon rank sum test 
(two-tailed), and for panels d and e using the Kolmogorov-Smirnov (KS) test 
(two-tailed).
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Extended Data Fig. 8 | Promoters of AIRE-induced genes were poised for 
expression prior to the engagement of AIRE. a, Boxplot comparing the 
ATAC-seq and Pol II ChIP-seq signals at promoters of AIRE-induced genes 
(n = 1563) versus those at expression-matched ANGs (n = 1907) in mTECs from 
Aire-KO mice. b, Exemplar DNA and chromatin profiles of AIRE-induced genes 
poised for expression in mTECs from Aire-KO mice. In comparison, exemplar 

profiles for an ANG were shown on the right. c, Same as Fig. 4d except WT 
ATAC-seq and ChIP-seq signals. p-values in panels a and c were calculated using 
the Wilcoxon rank sum test (two-tailed). C&T: CUT&Tag; L: Low, n = 747; M: 
Medium, n = 2130; H: High, n = 322; *: p-value < 1e-10; **: p-value < 1e-20. Data for 
WT and Aire-KO ATAC-seq, WT Pol II and AIRE ChIP-seq came from ref. 9. Data 
for WT MED1 ChIP-seq came from ref. 94.



Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | NFE2L2 may cooperate with Z-DNA to poise AIRE-
induced genes for expression. a, Boxplots comparing the Aire-KO BLISS 
signals at AIRE-induced gene promoter DSB hotspots containing varying 
numbers of NFE2L2-binding motifs (left) and CTCF-binding motifs (right). For 
NFE2L2-binding motifs: Low: <=1 (n = 598); Medium: 2–5 (n = 258); High: >5 
(n = 87). For CTCF-binding motifs: Low: <=1 (n = 468); Medium: 2–4 (n = 404); 
High: >4 (n = 71). b, Boxplots comparing the enrichment of NFE2L2-binding 
motifs at DSB hotspots up-regulated by spermidine (n = 159) versus those 
unaffected by spermidine (n = 104). The number of motifs was normalized 
according to the length of the DSB hotspots. c, Density plots and heatmaps 
showing distributions of Z-DNA motifs (top) and NFE2L2-binding motifs 
(bottom) at DSB hotspots in promoters (n = 6884). Grey areas depict 95% 
confidence intervals. d, Boxplot comparing the lengths of Z-DNA motifs at OCRs 

unchanged (n = 282) or up-regulated (n = 356) by BRG1 (See Methods) in mTECs. 
e, De novo motif analysis for OCRs unchanged versus up-regulated by BRG1. 
 f, MA plot (log2-scale) showing the expressions of NFE2-related factors in 
mTECs from Nfe2l2-KO and Ctrl mice. g, Representative cytofluorimetric plots 
and quantitative summary for mTECs from Nfe2l2-KO and Ctrl mice. Error bars, 
mean ± s.e.m. from n = 3 biological replicates. h, Volcano plots showing the 
expression of AIRE-induced genes and ANGs that contain high-confidence 
NFE2L2-binding motifs at promoters in mTECs from Nfe2l2-KO and Ctrl mice.  
i, Differentially expressed AIRE-induced genes and ANGs (p-value < 0.05) 
between mTECs from Nfe2l2-KO and Ctrl mice. p-values for panels a-b and d were 
calculated using the Wilcoxon rank sum test (two-tailed), and for panel h using 
the Fisher’s exact test (two-tailed). L: Low; M: Medium; H: High; CI: confidence 
interval. Nfe2l2-KO: Foxn1Cre-Nfe2l2flox/flox; Ctrl: control, Foxn1Cre-Nfe2l2+/+.



Extended Data Fig. 10 | Manipulation of Z-DNA formation, DSB generation 
or Nfe2l2 expression affected the expression of signature genes of mTEC 
mimetic cells. a, KEGG pathway analysis (adjusted p-value < 0.05) for 
differentially expressed genes (p-value < 0.05, fold-change > 2, n = 745) 
between mTECs from Nfe2l2-KO and Ctrl mice. b, Network plot showing the 
significantly enriched downregulated KEGG pathways and the associated 
genes. c, Expression of lineage-defining TFs42 in WT versus Aire-KO AIRE-stage 
mTECs (log2 scale). d, MA plots (log2 scale) highlighting expression changes of 

signatures genes of several mimetic mTEC subtypes in mTECs from Nfe2l2-KO 
versus Ctrl mice. Red dots depict signature genes of the corresponding 
subtypes. e-f, Analogous plots showing the impact of spermidine and 
topotecan, respectively. Signature gene lists used were available at https://
github.com/dmichelson/mimetic_cells/tree/main/scrna-seq/adult-neonate/
mimetic-cell-signatures. p-values for panels d-f were calculated using the 
Fisher’s exact test (two-tailed).

https://github.com/dmichelson/mimetic_cells/tree/main/scrna-seq/adult-neonate/mimetic-cell-signatures
https://github.com/dmichelson/mimetic_cells/tree/main/scrna-seq/adult-neonate/mimetic-cell-signatures
https://github.com/dmichelson/mimetic_cells/tree/main/scrna-seq/adult-neonate/mimetic-cell-signatures


Article

Extended Data Fig. 11 | A model of Z-DNA’s influence on AIRE target choice. 
Independent of AIRE, Z-DNA formation is more likely to occur at the promoters 
of genes having Z-DNA motifs but not under robust TF-mediated transcriptional 
control. NFE2L2 and other unknown factors would engage BRG1 or other 

chromatin remodelers to stabilize the energetically unfavorable Z-DNA 
formation. Z-DNA would enhance DSB generation at the promoters of genes 
subject to AIRE induction, which would facilitate their poising, thereby 
promoting the recruitment of and induction of gene expression by AIRE.
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The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Fastq data quality check: fastqc (v0.10.1, https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). 
Low-quality sequencing reads filtering and removal: Sickle (v1.33, https://github.com/najoshi/sickle). 
Cell sorting: FACSAria sorter (BD).

Data analysis The pre-trained CNN model was implemented in TensorFlow (v1.14.0, https://www.tensorflow.org/install) and trained on 2 Tesla V100 GPU 
cards. The full model architecture with custom Python code is available at the following URL: https://doi.org/10.5281/zenodo.10472904 
The fine-tuned model was implemented in TensorFlow (v2.3.0) and trained on 1 Tesla V100 GPU cards. The following software in Python 
(v3.6.11, https://www.python.org/downloads/) was used to interpret and visualize what the CNN model learned: pandas (v1.1.0), numpy 
(1.18.5), scipy (1.4.1), seaborn (v0.11.2), matplotlib (v3.3.0), MEME suite (v5.4.1, https://meme-suite.org/meme/index.html).  
The RStudio (v1.4.463, https://www.rstudio.com/categories/rstudio-ide/) and custom R code (v3.5.1, https://www.r-project.org/) was used 
for statistical analyses, scatterplots, boxplots, MA plots and bar plots. 
For non-F1-hybrid RNA-seq, RNA-seq reads were aligned using STAR (v2.7.3a, https://github.com/alexdobin/STAR). Differential expression 
analyses were performed using DESeq2 (v1.22.2, https://bioconductor.org/packages/release/bioc/html/DESeq2.html). For F1-hybrid RNA-seq, 
RNA-seq reads were aligned to the corresponding reference or alternative genome using Tophat2 (v2.1.1, http://ccb.jhu.edu/software/
tophat/tutorial.shtml). 
Sequencing reads of ATAC-seq. ChIP-seq, ChIPmentation, CUT&Tag and BLISS were aligned using bowtie2 (v2.3.4.3, https://bowtie-
bio.sourceforge.net/bowtie2/index.shtml).  
Post-processing of sequencing reads was performed using Samtools (v1.3.1, https://www.htslib.org/download/) and Picard (v2.8.0, https://
broadinstitute.github.io/picard/). 
Sequencing tracks were generated using deepTools (v3.0.2, https://deeptools.readthedocs.io/en/develop/), and displayed by Integrative 
Genomics Viewer (IGV, v2.5.0, https://software.broadinstitute.org/software/igv/download). 
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Sequencing profiles over various genomic regions (e.g. TSS) were generated using deepTools or the ngs.plot (v2.47.1, https://github.com/
shenlab-sinai/ngsplot). 
ATAC-seq peaks and ChIP-seq peaks were identified using MACS2 (v2.1.1.20160309, https://github.com/macs3-project/MACS/wiki/Install-
macs2). 
DNA double-strand breaks were called based on BLISS data using HOMER (v4.9, http://homer.ucsd.edu/homer/index.html) or MACS2 
(v2.1.1.20160309, https://github.com/macs3-project/MACS/wiki/Install-macs2).  
Motif enrichment analyses were conducted using MEME suite (v5.4.1, https://meme-suite.org/meme/index.html).  
The KEGG pathway analysis for differentially expressed genes were performed using clusterProfiler (v3.10.1, https://bioconductor.org/
packages/release/bioc/html/clusterProfiler.html). 
Flow cytometry analysis was performed using FlowJo (v10.8.1, https://www.flowjo.com/solutions/flowjo).
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reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data exclusions No data were excluded from analyses.

Replication All of the sequencing experiments have two or three biological replicates with high correlation as detailed in the supplementary table.

Randomization Mice under different ip injections were randomly allocated into experimental and control groups.

Blinding Blinding was not relevant to this study because all the results were obtained based on objective quantitative analyses.
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Methods
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ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used For flow cytometric analysis and cell sorting: anti-MHCII-APC (107614, BioLegend), anti-Ly51-PE (108308, BioLegend), anti-CD45-PE/

Cy7 (103114, BioLegend), anti-MHCII-PE (205308, BioLegend), anti-Ly51-Alexa Fluor 647 (108312, BioLegend), anti-CD4-Brilliant 
Violet 605 (100548, BioLegend), anti-CD8a-FITC (100706, BioLegend), anti-CD19-APC (115512, BioLegend), anti-Z DNA (ab2079, 
abcam). 
For ChIPmentation, ChIP-seq and CUT&Tag: anti-Aire (14-5934-82, eBioscience), anti-NELF (ab170104, abcam), anti-rabbit IgG 
(611-201-122, Rockland), anti-RNA polymerase II phospho S5 (ab5131, abcam), anti-RNA polymerase II (MMS-128P, Covance), anti-Z-
DNA/Z-RNA (Z22) (Ab00783-23.0, Absolute Antibody), Rabbit IgG (#2729, Cell Signaling) 

Validation Validation of the commercial antibodies were done by the manufacturers.  
Below shows the relevant citations listed on the suppliers' websites for antibodies used in this article. 
• anti-MHCII-APC (107614, BioLegend): https://pubmed.ncbi.nlm.nih.gov/33177715/ 
• anti-Ly51-PE (108308, BioLegend): https://pubmed.ncbi.nlm.nih.gov/32338592/ 
• anti-CD45-PE/Cy7 (103114, BioLegend): https://pubmed.ncbi.nlm.nih.gov/33106654/ 
• anti-MHCII-PE (205308, BioLegend): https://pubmed.ncbi.nlm.nih.gov/33893298/ 
• anti-Ly51-Alexa Fluor 647 (108312, BioLegend): https://pubmed.ncbi.nlm.nih.gov/35042581/ 
• anti-CD4-Brilliant Violet 605 (100548, BioLegend): https://pubmed.ncbi.nlm.nih.gov/31079916/ 
• anti-CD8a-FITC (100706, BioLegend): https://pubmed.ncbi.nlm.nih.gov/31442407/ 
• anti-CD19-APC (115512, BioLegend): https://pubmed.ncbi.nlm.nih.gov/34788598/ 
• anti-Z DNA (ab2079, abcam): https://pubmed.ncbi.nlm.nih.gov/34735796/ 
• anti-Aire (14-5934-82, eBioscience): https://pubmed.ncbi.nlm.nih.gov/28135252/ 
• anti-NELF (ab170104, abcam): https://pubmed.ncbi.nlm.nih.gov/32102997/ 
• anti-rabbit IgG (611-201-122, Rockland): https://pubmed.ncbi.nlm.nih.gov/34901015/ 
• anti-RNA polymerase II phospho S5 (ab5131, abcam): https://pubmed.ncbi.nlm.nih.gov/33526923/ 
• anti-RNA polymerase II (MMS-128P, Covance): https://pubmed.ncbi.nlm.nih.gov/33453168/ 
• anti-Z-DNA/Z-RNA (Z22) (Ab00783-23.0, Absolute Antibody): https://pubmed.ncbi.nlm.nih.gov/35614224/ 
• Rabbit IgG (#2729, Cell Signaling): https://pubmed.ncbi.nlm.nih.gov/37744380/

Animals and other research organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 
Research

Laboratory animals The mice used in this study were all 4-6-week-old females from the following backgrounds:  
homozygous C57BL/6J (B6), CAST/EiJ (CAST) and NOD/ShiLtJ (NOD); 
F1-hybrid: B6/NOD and B6/CAST.

Wild animals This study did not involve wild animals.

Reporting on sex All the mice used were females because previous studies on Aire were performed using female mice. To enable comparison with 
published data on Aire, we used female mice for this study.
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Field-collected samples This study did not involve samples collected from the field.

Ethics oversight All mice were handled according to the Institutional Animal Care and Use Committee (IACUC) protocol #IS00001257.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

ChIP-seq

Data deposition
Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

ChIP-seq data were deposited as a SubSeries under GEO accession GSE224553 of the SuperSeries GSE224557 at: https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE224553.

Files in database submission Raw fastq files and processed bigwig files for ChIP-seq on mTECs from Aire-KO and Aire-WT mice.

Genome browser session 
(e.g. UCSC)

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to 
enable peer review.  Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates For Pol II ChIP-seq: Two biological replicates were generated using independent mice. The correlation between two replicates' signals 
is 0.96. 
 
For Z-DNA ChIP-seq: Two biological replicates were generated using independent mice. The correlation between two replicates' 
signals is 0.98.

Sequencing depth For Pol II ChIP-seq: 
Sequencing depth: 2 million and 10 million. 
Uniquely mapped reads: 80%. 
Read length: 50bp. 
Single-end. 
 
For Z-DNA ChIP-seq: 
Sequencing depth: 60-70 million. 
Uniquely mapped reads: 80%. 
Read length: 42+42bp. 
Paired-end.

Antibodies anti-RNA polymerase II (MMS-128P, Covance);  anti-Z-DNA/Z-RNA (Z22) (Ab00783-23.0, Absolute Antibody)

Peak calling parameters For Pol II ChIP-seq: 
Read mapping:  
bowtie2 -p 8 -x ${genomeDir} -U $prefix.filtered.fq -S $prefix.btout2.sam  
Peak calling: 
macs2 callpeak -t ${polII_bam_file} -c ${ctrl_bam_file} -g mm --keep-dup all  
 
For Z-DNA ChIP-seq: 
Read mapping:  
bowtie2 --local --very-sensitive --no-mixed --no-discordant --phred33 -I 10 -X 1000 --fr -p 8 -x ${genomeDir} -1 $prefix.trim2_R1.fq -2 
$prefix.trim2_R2.fq -S $prefix.btout2.sam 
Peak calling: 
macs2 callpeak -g mm --keep-dup all -p ${THRES} -f BAMPE -t ${zdna_bam_file} -c ${ctrl_bam_file} -B

Data quality High-confidence, reproducible peaks among replicates were identified using the irreproducible discovery rate (IDR) framework with a 
global IDR < 0.05. There are 9,402 Pol II ChIP-seq peaks with IDR < 0.05. There are 6,022 Z-DNA ChIP-seq peaks with IDR < 0.05.

Software bowtie2: v2.3.4.3, https://bowtie-bio.sourceforge.net/bowtie2/index.shtml 
macs2, v2.1.1.20160309, https://github.com/macs3-project/MACS/wiki/Install-macs2 
IDR: v2.0.2, https://github.com/nboley/idr



5

nature portfolio  |  reporting sum
m

ary
M

arch 2021
Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation For cell sorting and flow cytometric analysis:  
Thymus tissues from individual female mice were collected in Dulbecco's Modified Eagle Medium (DMEM; Gibco) 
supplemented with 2% fetal bovine serum (FBS) and 25mM HEPES (basic medium), and minced with scissors. The fragments 
were then digested for 20 min with 0.5mg/ml collagenase (Sigma-Aldrich) and 0.2mg/mL DNase (Sigma-Aldrich), then with 
collagenase/dispase (Roche) and 0.2mg/mL DNase (Sigma-Aldrich) for 15 min. CD45+ cells were depleted by magnetic-
activated cell sorting (MACS) with CD45 MicroBeads (Miltenyi). For mice on B6 and B6/CAST background, cells were stained 
with the following primary antibodies: MHCII-APC (107614, BioLegend), Ly51-PE (108308, BioLegend); CD45-PE/Cy7 (103114, 
BioLegend). For mice on NOD and B6/NOD background, cells were stained with: MHCII-PE (205308, BioLegend), Ly51-Alexa 
Fluor 647 (108312, BioLegend); CD45-PE/Cy7 (103114, BioLegend). Cells were stained in the basic medium. 4’,6-diamino-2-
phenylindole (DAPI) was added before sorting to exclude dead cells. For flow cytometric analysis of thymocytes, the following 
primary antibodies were used: CD4-Brilliant Violet 605 (100548, BioLegend), CD8a-FITC (100706, BioLegend), CD19-APC 
(115512, BioLegend). For flow cytometric analysis of Z-DNA formation in mTECs, the anti-Z DNA antibody (ab2079, abcam) 
was used.

Instrument FACSAria sorter (BD Biosciences) equipped with 4 lasers (355 (UV), 405, 488, and 638 nm) and 16 detector.

Software Flow cytometry analysis was performed using FlowJo (v10.8.1, https://www.flowjo.com/solutions/flowjo).

Cell population abundance Cell population abundances were determined using FlowJo (v10.8.1).

Gating strategy FSC-A and SSC-A were used to exclude debris. Doublets were excluded using FSC-A and FSC-H gates. Live/dead staining by 
DAPI was used to get rid of dead cells. For F1-hybrid sequencing experiments, DAPI-,CD45-,Ly51lo,MHCIIhi,GFPhi mTECs from 
B6 homozygous, NOD homozygous or B6/NOD F1 mice were sorted. For all other experiments, DAPI-,CD45-,Ly51lo,MHCIIhi 
mTECs were sorted. 

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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