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T  C E L L S

FoxP3 associates with enhancer-promoter loops 
to regulate Treg-specific gene expression
Ricardo N. Ramirez, Kaitavjeet Chowdhary, Juliette Leon, Diane Mathis*, Christophe Benoist*

Gene expression programs are specified by higher-order chromatin structure and enhancer-promoter loops (EPLs). 
T regulatory cell (Treg) identity is dominantly specified by the transcription factor (TF) FoxP3, whose mechanism of 
action is unclear. We applied chromatin conformation capture with immunoprecipitation (HiChIP) in Treg and 
closely related conventional CD4+ T cells (Tconv). EPLs identified by H3K27Ac HiChIP showed a range of connection 
intensity, with some superconnected genes. TF-specific HiChIP showed that FoxP3 interacts with EPLs at a large 
number of genes, including some not differentially expressed in Treg versus Tconv, but enriched at the core Treg 
signature loci that it up-regulates. FoxP3 association correlated with heightened H3K27Ac looping, as ascertained 
by analysis of FoxP3-deficient Treg-like cells. There was marked asymmetry in the loci where FoxP3 associated 
at the enhancer- or the promoter-side of EPLs, with enrichment for different transcriptional cofactors. FoxP3 EPL 
intensity distinguished gene clusters identified by single-cell ATAC-seq as covarying between individual Tregs, 
supporting a direct transactivation model for FoxP3 in determining Treg identity.

INTRODUCTION
Looping is the solution that allows the packaging of the gigantic 
strands of chromosomal DNA into tight nuclear spaces while 
ensuring the spatial organization and connectivity essential for the 
orderly deployment of their coding capacity (1–3). Some of the 
resulting topologies are very large, on the greater than megabase scale, 
such as the higher-order compartment domains, and primarily 
relate to overall organization. More directly associated with the 
unfolding of the genome’s coding potential are the enhancer-promoter 
loops (EPLs) that bring distal enhancers into close proximity to 
transcriptional start sites (TSSs) in the three-dimensional (3D) space, 
enabling their interactions to regulate transcriptional programs (4–6). 
Rewiring of EPLs occurs during differentiation in several mamma-
lian systems, ranging from early differentiation to olfactory receptor 
allelic choice (7–10). It has been proposed (5) that programmatic shifts 
associated with differentiation involve new enhancer- promoter 
connectivity, whereas the fast responses to stimuli or growth factors 
exploit preexisting contacts, by modifying the activity of associated 
proteins (11–13). This dichotomy may not be as well defined as 
stated, and it is unclear how much EPL rewiring exists between 
closely related cells. Loops are dynamic structures, and the burst-
like nature of transcriptional output may correspond to transient 
enhancer-promoter interactions (14). Last, how sequence-specific 
transcription factors (TFs) coopt the EPL landscape remains mostly 
hypothetical. Intuitively, fast-acting TFs whose mechanism of action 
relies on nuclear translocation (e.g., NF-AT) or activation at the cell 
membrane (e.g., STATs) likely operate on preexisting EPLs. Other 
TFs might, instead, provoke the formation of new EPLs by di-
merization (15) or macromolecular complex formation. A corollary 
question is whether an EPL is intrinsically sufficient for transactiva-
tion or only a framework onto which activation mechanisms latch 
(4, 5). The regulatory function of TFs operating via EPLs has been 
demonstrated for both cell-specific and general TFs (e.g., Klf4 and 
Yy1, respectively) (16, 17).

T regulatory cells (Tregs) are a branch of CD4+ T cells that act as 
dominant negative regulators of many facets of the immune system 
(18,  19). They also control extraimmunologic consequences of 
inflammation in several organs (20). Consistent with these pleiotropic 
functions, several phenotypic variants of FoxP3+ Tregs exist, with 
tuned transcriptomes that adapt to their tissue localization and 
effector functions (21). FoxP3, a member of the forkhead/winged- 
helix family of TFs, is quasi-exclusively expressed in Tregs and plays 
a central role in determining their identity and function and their 
characteristic transcriptional signature. It is, however, neither com-
pletely necessary nor sufficient for Treg determinism (22–25) and 
requires synergistic action from a number of transcriptional 
cofactors with which it interacts (26–31). FoxP3 is not a pioneer 
factor, as many of the enhancers and open chromatin regions 
(OCRs) to which it binds are already accessible in the T cell lineage 
before FoxP3 expression (32, 33), although a smaller group of 
FoxP3-binding OCRs are activated contemporaneously with Treg 
differentiation.

While FoxP3 can synergize with several sequence-specific TFs 
and with chromatin modifiers, its true mechanism of action remains 
poorly understood. There is debate as to it being an activator or a 
repressor and even whether it activates Treg-specific transcription 
directly or by tuning intermediates. Some have argued that it func-
tions primarily as a transcriptional repressor (26, 27, 34–36). The 
repression of cytokines produced upon activation by conventional 
CD4+ T cells (Tconv), and, in particular, interleukin-2 is a well- 
established function of FoxP3. Conversely, results from several 
experimental systems suggest that FoxP3 also behaves as an activator 
for many of its transcriptional targets (31, 37–40) and that this is its 
principal mode of action. The “cofactor model” posits that this 
functional dichotomy depends on the identity of the cofactor(s) 
with which it interacts in controlling specific targets (27, 31, 38). 
Superresolution microscopy does show FoxP3 associated with acti-
vating or repressive cofactors in different “transcriptional hubs” in 
the nucleus of the same Treg (31).

An important missing piece of the FoxP3 puzzle is an under-
standing of its interactions with nuclear loop structures, particularly 
enhancer-promoter connectivity. Chromatin immunoprecipitation 
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sequencing (ChIP-seq) data show FoxP3 binding in the vicinity of 
TSS and at distant enhancers (31, 32, 41), but how FoxP3 inter-
relates with EP connectivity is unknown. Does FoxP3 enhance or 
disrupt the formation of specific EPLs in Tregs? Does it dock onto 
existing loop structures to nucleate regulatory (activating or inhibi-
tory) complexes? Here, we examine this question by using chromatin 
conformation capture with immunoprecipitation (HiChIP), first with 
anti-H3K27Ac antibody to establish the comparative landscape of 
EPLs in primary Treg and Tconv cells, two closely related cell types. 
We then map FoxP3 molecules onto Treg EPLs. Directly relevant to the 
question of FoxP3 mechanics, the results show that FoxP3-bearing 
EPLs correspond to strong H3K27Ac loops genome wide and posi-
tively associate with differential transcription between Tconv and 
Tregs, consistent with action as a direct transcriptional activator.

RESULTS
Mapping the enhancer-promoter connectome in Treg 
and Tconv cells
To understand how the short- and long-range enhancer-promoter 
contacts mediate the cell type–specific expression patterns among 
mouse CD4+ T cells, we first used the HiChIP method (9), which 
identifies chromatin loops associated with a histone mark or a 
particular TF by combining proximity ligation of DNA strands with 
immunoprecipitation, quantitated by high-throughput sequencing. 
Antibodies against H3K27Ac, the histone modification typical of 
active enhancers, focused the analysis on loops connecting active 
enhancers. We analyzed primary mouse Treg and Tconv cells directly 
purified ex vivo to avoid imprints from cell culture, aiming for deep 
libraries to support robust quantitative analysis (200 to 300 M reads 
per sample on average; table S1). This required sizeable numbers of 
cells, achieved by magnetic purification from Foxp3-Thy1.1 reporter 
mice. In line with current practice (42, 43), we quantitated EPL 
signals as reads that connect the promoter region (±500 bp around 
the TSS) to 5-kb bins tiled ±250 kb from the gene’s TSS. To correct 
for proximity-biased background in HiChIP data, we compared the 
EPL signals to a null distribution generated from the interactions of 
1000 random intragenic positions, which allowed estimates of 
significance corrected for relative distance to the TSS [similar to 
(42–44)]. Signals were conserved among biological replicates (fig. 
S1A). A control HiChIP with an irrelevant isotype-matched anti-
body showed that the vast majority of H3K27Ac+ EPLs were specific 
(P < 0.0001; fig. S1B).

Across both Treg and Tconv, 115,538 significant EPLs were identi-
fied [false discovery rate (FDR) of 0.05] among 9058 genes selected 
for reliable mRNA expression in Treg or Tconv cells (data file S1), as 
illustrated for Lrrc32 (Fig. 1A). The median H3K27Ac EPL size was 
49.5 kb (fig. S1C), concordant with EPL size estimates in other 
mammalian cells (7, 9). Only 0.5% of H3K27Ac EPLs reached 
further than 1  Mb from the TSS, indicating that such very long 
range interactions can occur but are the exception. Cumulative EPL 
intensity for each gene was only marginally related to its mRNA 
levels (fig. S1D), fitting with recent reports (5, 45).

A gene’s cumulative EPL intensity showed a linear relationship 
to its number of EPLs (Fig. 1B). At first blush, this is mathematically 
obvious, but on further thought, it implies that an active promoter 
does not simply allocate a fixed interaction potential by alternating 
between its potential enhancers. Each enhancer has a given proba-
bility of interaction, and these are cumulated for each gene 

(plausibly by corecruitment into a transcriptional hub). This conti-
nuity suggests that the regulatory cross-talk of enhancers that loop 
to the same promoter operates through additive modalities (46).

Some genes had far more EPL connectivity than others, over a 
10-fold range (Fig. 1C and data file S2). Such a spread was observed 
in nonimmunologic lineages, where some authors proposed to 
distinguish a class of “Super Interactive Promoters” (47, 48). Here, 
such superconnected genes (523  in Treg and 520  in Tconv) include 
several Treg and Tconv hallmarks such as Entpd1, Lef1, Ccr7, Cd5, or 
Lrrc32. These superinteractive genes tend to be associated with 
“Super Enhancer” elements: Of the 65 superenhancers nominated 
in Tregs (41), 13 included superinteractive promoters (chisq P < 0.01).

Differences between Treg and Tconv were readily identified, as ex-
emplified by several prototypical Treg signature transcripts. Several 
EPLs were observed at the Ikzf2 promoter in Tregs but none signifi-
cantly above background in Tconv (Fig. 1D). ATAC-seq accessibility 
patterns were essentially identical in Treg and Tconv at these posi-
tions, however, suggesting that the locus is poised but not connected 
in Tconv (which do express Ikzf2 upon activation). Reciprocal Treg 
or Tconv patterns were observed for Treg signature genes Il2rb and 
Pde3b (fig. S1E). Genome wide, we identified 10,168 (9% of total 
EPLs) differentially active EPLs [at fold change (FC) of >2, P < 0.05; 
Fig. 1E and fig. S2A]. Signal intensities in HiChIP data integrate 
true loop frequency and stability (“3D signal”) with the total abun-
dance of the mark targeted by the immunoprecipitation (“1D 
signal”; fig. S2, C to E) (9). Total EPL signal in HiChIP data could 
thus appear to change, even if there was no actual increase in loop 
abundance per se. Analysis of the variation of total (1D) H3K27Ac 
signal showed that the Treg/Tconv differences in EPL intensity did 
represent increased looping, as they could not be accounted for by 
simple variation in H3K27Ac deposition, which varied very 
modestly (Fig. 1F). This degree of EPL variation between CD4+ 
T subsets is generally more extensive than the disparity observed by 
chromatin accessibility (less than 1% difference in accessibility) (32). 
Some genes that prototypically distinguish Treg and Tconv show 
differential EPLs (Ikzf2, Lef1, Satb1, Il2ra, and Foxp3; fig. S2B), con-
sistent with observations in human T cells (9). Accordingly, pairing 
of gene expression and cumulative EPL intensity revealed a positive 
relationship between differential EPL intensity and mRNA levels 
between the two cell types (Fig. 1G).

FoxP3 preferentially targets hyperactive EPLs
Having established the overall landscape of EPLs in Treg and Tconv 
cells, we performed HiChIP with anti-FoxP3 antibody to identify 
enhancer-promoter interactions that involve FoxP3, for clues to 
understand how it performs its central role in shaping Treg identity. 
Data were generated in well-correlated biological duplicates (fig. 
S3A), with correction for proximity ligation and an irrelevant 
immunoglobulin G (IgG) control to ensure specificity (fig. S3, B and 
C). To help identify the most reliable FoxP3 EPLs, we leveraged 
existing FoxP3 ChIP-seq data (32, 41) (fig. S3D) and filtered puta-
tive FoxP3 EPLs against this input (fig. S3E). We thus identified 
13,681 robust FoxP3-decorated EPLs of ~20-kb median length (fig. 
S3F and Fig. 2A). FoxP3 EPLs connected enhancers to the promoters of 
an unexpectedly large number of genes (4797), confirming that 
FoxP3 relates to far more loci than just the ~500 genes of the Treg 
signature. Here again, a subset of genes showed superconnectivity 
(Fig. 2B), enriched for T cell–specific ontologies (T activation P = 10−12, 
cytokine signaling P = 10−11) and Treg signature genes (Il2ra, Ikzf2, 
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and Entpd1). As illustrated for Entpd1 and Il2ra, prototypical Treg-
up signature genes, abundant FoxP3-decorated EPLs corresponded 
to FoxP3-binding enhancers identified by ChIP-seq (Fig. 2A and 
fig. S4A) and overlapped with a subset of the H3K27Ac EPLs. At 
both the Lef1 andTcf7 loci, which are underexpressed in Tregs, FoxP3 
EPLs also aligned with the positions of H3K27Ac EPLs, the latter 
being far less intense in Treg than in Tconv cells, consistent with an 

inhibitory impact of FoxP3 (Fig. 2C and fig. S4C). At the Il2 locus, 
two H3K27Ac EPLs were observed in Tconv (fig. S4B), but no loops 
whatsoever were detected in Treg, whether in association with 
H3K27Ac or with FoxP3, suggesting that the locus is closed into 
heterochromatin independently of FoxP3.

We then analyzed the distribution of FoxP3 EPLs, beyond these 
examples, in gene sets that reflect differential expression in Tregs and 

Fig. 1. T cell–specific EPLs sync 
with the transcriptional regu-
lation of the Treg gene program. 
(A) Profiling the genome- wide 
enhancer-promoter architec-
tures of mouse regulatory T cells 
in vivo with H3K27Ac HiChIP. A 
focused view of the Lrrc32 locus 
shows a null distribution based 
on random proximity-biased 
ligations [95% confidence in-
terval (CI)] and those called 
as significant H3K27Ac HiChIP 
EPLs (FDR, 5%) in Tregs. (B) Scatter 
density plot of Treg H3K27Ac 
HiChIP EPLs and the relative 
cumulative intensities (Pearson 
r = 0.78, log10). (C) Ranking plots 
of superinteractive promoters 
determined for H3K27Ac Treg 
(top, n = 523 genes) and Tconv 
(bottom, n = 520 genes) using the 
summed cumulative H3K27Ac 
EPL FDRs, respectively. (D) T cell– 
specific enhancer-promoter con-
figurations of the Ikzf2 locus in 
Treg (top) and Tconv (bottom) 
cells. Differential EPLs are con-
sidered as >2 FC and adjusted 
P < 0.05. IgG control HiChIP 
and null distributions (95% CI) 
are also shown for Tregs and 
Tconv cells. ATAC-seq genomic 
tracks and RNA expression for 
Ikzf2 are shown for Tregs and 
Tconv cells, respectively. NS, not 
significant; AU, arbitrary units. 
(E) FC versus mean intensity 
(MA) plot of differential H3K27Ac 
HiChIP EPLs between Treg (red) 
and Tconv (blue) cell types. 
EPLs with differential intensity 
(adjusted P < 0.05, FC > 2) are 
highlighted with numbers shown. 
(F) Comparison of 3D H3K27Ac 
HiChIP EPL intensities (x axis, 
FC in Treg versus Tconv) and 1D 
H3K27Ac HiChIP EPL intensities 
(y axis, FC in Treg versus Tconv). 
(G) Comparison of RNA expres-
sion (x axis, FC in Treg versus Tconv) 
and cumulative H3K27Ac EPL 
intensities (y axis, FC in Treg versus 
Tconv). Genes are colored as up 
(red) or down (blue) Treg signa-
ture membership.
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FoxP3 dependence. Classic 
“Treg signature genes,” which are 
known to have FoxP3- dependent 
and FoxP3- independent com-
ponents (39, 49), showed a 
modest but significant in-
crease in cumulative FoxP3 
EPL intensity compared with 
expression-matched “neutral” 
genes (Fig. 2D). This enrich-
ment was accentuated in a set of FoxP3-dependent genes that are 
up-regulated after short-term FoxP3 transfection (Fig. 2E) (31). No 
such enrichment was seen for down- regulated targets (Fig. 2, 
D and E). The strongest enrichment in FoxP3-associated EPLs was 
seen for genes that constitute a core signature of FoxP3- dependent 
genes identified in FOXP3-deficient mice and patients (Fig. 2F) (25). 
These results are consistent with the notion that transcriptional 
up-regulation by FoxP3 is directly achieved through enhancer- 
promoter connections at up-regulated loci.

Overall, plotting the relationship between FoxP3 and H3K27Ac 
EPLs showed that FoxP3 EPLs correspond to loops with the highest 
level of H3K27Ac-associated signals (Fig.  2G), suggesting that 
FoxP3 associates with the most active chromatin. To ensure that 
this observation was not an experimental artifact, we performed 
HiChIP for the Yy1 TF, which is considered a structural regulator 
broadly involved in enhancer-promoter topologies (17, 50). In Tregs, 
Yy1 represses Foxp3 (51) and inhibits transactivation by FoxP3 
protein (31,  51). The 12,426 Yy1 EPLs thus identified were also 
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Fig. 2. Genome-wide Treg FoxP3 
enhancer-promoter looping gen-
erally associates with H3K27Ac- 
marked architectures. (A) Treg FoxP3 
(top) and Treg H3K27Ac (bottom) EPLs 
shown for the target gene Entpd1. 
Highlighted areas emphasize the 
agreement between FoxP3 and 
H3K27Ac EPLs. (B) Rank plot of the 
FoxP3-specific superinteractive pro-
moters (n = 320 genes). (C) FoxP3 
(top), Treg H3K27Ac (middle), and 
Tconv H3K27Ac (bottom) EPLs for 
the Lef1 locus. (D to F) Boxplots of 
FoxP3 cumulative EPL intensities for 
the Treg (D), FoxP3 transactivated 
(E), and core signatures (F). Signifi-
cance was determined for Treg up 
(P < 0.05), FoxP3 transactivated up 
(P < 0.001), and core Treg (P < 0.01) 
gene sets using a t test. (G) Scatter-
plot of FoxP3 HiChIP EPL intensities 
(x axis, log2) and Treg H3K27Ac HiChIP EPL 
intensities (y axis, log2). FoxP3- specific 
EPLs are highlighted. (H) Scatterplot 
of FoxP3 HiChIP EPL intensities (x 
axis, log2) and Tconv H3K27Ac HiChIP 
EPL intensities (y axis, log2). FoxP3- 
specific EPLs are highlighted. (I) FC 
distributions comparing H3K27Ac 
HiChIP EPL intensities (y axis, Treg 
versus Tconv) for each FoxP3 EPL 
bin (x axis). Significance was deter-
mined using a t test (P < 0.001).
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enriched in H3K27Ac HiChIP intensity when compared with non-
Yy1 chromatin interactions (P < 0.05), similar to FoxP3 and consist-
ent with observations in stem cells (17). However, FoxP3 and Yy1 
EPLs showed differential EPL patterns (fig. S6, A and B), most no-
tably at Il2 (fig. S4B). In a combined set of FoxP3/or/Yy1 EPLs 
(n = 21,341), 54.3% were differentially represented (>2-fold differ-
ence in intensity). The genes associated with FoxP3 or Yy1 EPLs 
belonged to different functional classes: Yy1 EPLs were enriched in 
“general transcription” or “cell protein catabolism” ontologies, 
whereas FoxP3-associated EPLs belonged to more immune-specific 
pathways (“adaptive immune system” and “MHC-I presentation”; 
fig. S6C).

Examination in Tconv of those H3K27Ac EPLs that bind 
FoxP3 in Tregs revealed that most of them also had high intensity in 
Tconv (Fig. 2H). Thus, FoxP3 binds to EPLs that are very active in 
CD4+ T cells in general and not solely to Treg-specific ones, consist-
ent with the notion that it homes to chromatin locales that are 
ubiquitously open in T cells (32, 33). If FoxP3 locates to Treg EPLs 
with the highest degree of activation, how does its presence affect 
them? To address this question, we compared the H3K27Ac EPL 
intensities of the EPLs in Tregs, where FoxP3 is bound, versus in 
Tconv, where FoxP3 is absent, across bins of FoxP3 EPL intensity. 
Increasing FoxP3 corresponded to increased H3K27Ac EPL signal 
at those EPLs in Tregs relative to Tconvs (Fig.  2I), suggesting that 
FoxP3 may exert a facilitating influence on EPLs.

Direct tuning of FoxP3-dependent transcriptional programs 
through FoxP3 EPLs
Our results are compatible with, but do not prove, the notion that 
transcriptional activation by FoxP3 is actuated directly through 
enhancer-promoter connections around its target genes. However, 
this notion is at odds with the recent claim that FoxP3 shapes Treg 
identity indirectly, by regulating the abundance of intermediary 
TFs like T cell factor 1 (TCF1) (encoded by Tcf7) (52). While we did 
observe FoxP3-decorated EPLs across the Tcf7 locus (fig. S4C), the 
sweeping conclusion that indirect regulation shapes Treg transcrip-
tional identity is likely an overstatement, as discussed in detail else-
where [see note in (53)]. Some indirect control probably occurs 
(because FoxP3 controls several other TFs), but a sizeable portion of 
the FoxP3-dependent transcriptome is likely to be directly con-
trolled by FoxP3, including key functional transcripts. It was im-
portant, however, to verify that the FoxP3-decorated EPL structures 
reported here are functionally relevant. To this end, we performed 
H3K27Ac HiChIP on Treg-like cells sorted from a novel FoxP3- 
deficient line [hereafter knockout–green fluorescent protein (KO-
GFP; fig. S5, A to C), constructed from the classic FoxP3-IRES-GFP 
reporter mouse (54) by a CRISPR-engineered frameshift mutation 
that eliminates the Forkhead domain, resulting in a full scurfy-like 
Treg deficiency phenotype; see Methods]. As other FoxP3-deficient 
mice [see (25) for references], KO-GFP mice contain a sizeable pro-
portion of FoxP3-null Treg-like cells (fig. S5, D and E), identifiable 
by activity of the GFP reporter appended to the disarmed Foxp3 
locus. Heterozygous females with one copy of this locus are protected 
from disease by the wild-type (WT) Foxp3 allele (provided by a 
Foxp3-Thy1.1 reporter chromosome to facilitate identification; fig. 
S5E). Genomic comparison to cells in which the intact Foxp3-GFP 
allele (hereafter WT-GFP) is active enables very precise determina-
tion of the effect of the FoxP3 deficiency in Treg-like cells, identified 
by the same reporter configuration. We sorted WT-GFP and 

KO-GFP Tregs from half-sib heterozygous females (Fig.  3A) 
and performed H3K27Ac HiChIP to evaluate FoxP3’s effects on 
enhancer-promoter looping.

Lieberman-Aiden et al. (55) showed that HiC and HiChIP data, 
when analyzed by principal components analysis, reveal spatial seg-
regation of open and closed chromatin that forms two genome-wide 
compartments. By this measure, FoxP3 deficiency did not affect nu-
clear compartments on the macroscale, with no change in heteroch-
romatin compartments identified by principal components analysis 
(Fig. 3, B and C). However, loci with rich FoxP3 EPLs, like Ikzf2 and 
Lrrc32, showed significantly reduced H3K27Ac-decorated loops in 
FoxP3 KO Tregs (arrows in Fig. 3D, P < 0.05); these differences were 
reproducible in biological replicates (fig. S5F). As above, this reduc-
tion in EPL intensity in KO-GFP Tregs denoted a true loss of connec-
tivity, not merely lower H3K27Ac decoration (Fig. 3E): The drop in 
H3K27Ac EPL intensity (x axis) was not accompanied by a drop 
in total “1D” H3K27Ac signal at these loci. Conversely, FoxP3 
down-regulated targets Lef1 and Add3 showed increased H3K27Ac 
EPL signal in KO-GFP Tregs (fig. S5G). Comparing genome-wide 
H3K27Ac EPL abundance in WT-GFP and KO-GFP Treg-like cells 
showed a general concordance, with only a light bulge for the most 
highly represented EPLs (Fig. 3F). This deviation was confirmed by 
plotting the KO-GFP/WT-GFP ratio of H3K27Ac EPL intensity 
across FoxP3 EPL intensity bins (Fig. 3G, P < 0.01), showing a clear 
reduction in signal resulting from the lack of FoxP3 in those EPLs 
with highest FoxP3 EPL intensity. The conclusion that FoxP3 di-
rectly shapes chromatin connectivity and its transcriptional rele-
vance was confirmed by the cumulative density plot of KO/WT 
ratios for FoxP3 target genes defined as above (from direct transac-
tivation studies or the core Treg set; Fig. 3H). EPLs in FoxP3–up- 
regulated genes were more sensitive than the norm to the absence of 
FoxP3 (and the converse was true of FoxP3-repressed loci). These 
results support FoxP3’s association to epigenetically active loops, 
through which it directly influences the Treg-specific gene program.

Two different categories of FoxP3-dependent genes
These results show that, as a group, transcripts whose expression is 
up-regulated by FoxP3 are enriched in FoxP3-adorned EPLs, but 
this characteristic does not necessarily apply to all such genes. To 
further discriminate between loci with FoxP3-enhanced expression 
in Tregs, we compared accessibility in single cells: Similarly regulated 
genes tend to have correlated activity across individual cells, and 
correlation analysis can uncover groups of genes with similar regu-
latory logic (56, 57). We used single-cell ATAC-seq (scATAC-seq) 
because chromatin accessibility is more stable than mRNA levels 
(57–59), generating high-quality scATAC-seq profiles for 5810 
splenic Tregs, including resting Treg (rTreg) and activated Treg (aTreg) 
subsets (Fig. 4A). We first defined a FoxP3-dependent gene set 
from the expression data of van der Veeken et al. (52), by contrast-
ing Treg-like cells from heterozygous female mice in which FoxP3- 
deficient or FoxP3-proficient X chromosomes were active (fig. S6D; 
377 up-regulated genes in FoxP3 proficient versus deficient at FC > 2 
and P  <  0.01). We generated a gene accessibility score from the 
scATAC-seq data and correlated these scores across all Tregs in the 
scATAC dataset. This gene-gene correlation network resolved into 
two predominant gene clusters (Fig. 4A), which exhibited a marked 
imbalance in FoxP3 EPL density (Fig. 4, B and C; P < 0.01, data file 
S3). Loci in cluster 1 had high FoxP3 EPL density (Fig. 4, B to D) 
and included many key Treg transcripts (Il2ra, Il2rb, Lrrc32, 
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Fig. 3. FoxP3 enhancer-promoter looping directly modulates FoxP3-dependent transcriptional program. (A) FACS plots for WT-GFP–sorted (top) and KO-GFP–sorted 
(bottom) Treg populations (gated on the CD4+TCR+ population). (B) WT-GFP and KO-GFP intensity and chromatin compartment H3K27Ac HiChIP maps. (C) Genome-wide 
scatterplot of H3K27Ac HiChIP genome compartment scores (Pearson, 0.98). (D) WT-GFP (red) and KO-GFP (purple) H3K27Ac HiChIP intensity maps (left) and EPLs (right) 
of FoxP3 targets Ikzf2 and Lrrc32. Arrows indicate EPLs FC > 1.5 and P < 0.05). (E) Comparison of 3D H3K27Ac HiChIP EPL intensities (x axis, FC in KO-GFP versus WT-GFP) 
and 1D H3K27Ac HiChIP intensities (y axis, FC in KO-GFP versus WT-GFP). Ikzf2- and Lrrc32-specific H3K27Ac EPLs are indicated. (F) Scatterplot of WT-GFP and KO-GFP 
H3K27Ac HiChIP EPL intensities for FoxP3-specific EPLs. (G) FC distributions comparing H3K27Ac HiChIP EPL intensities (y axis, KO-GFP versus WT-GFP) for each FoxP3 EPL 
bin (x axis). Significance was determined using a t test (P < 0.01). (H) Cumulative distribution frequency plot comparing KO-GFP and WT-GFP H3K27Ac EPL intensities for 
FoxP3 transactivated (up, P < 0.001) and core Treg (P < 0.01) signatures. Significance was determined using a two-sample K-S test.
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Izumo1r, and Nrp1), predominantly characteristic of rTregs; in con-
trast, genes of cluster 2 showed much lower FoxP3 EPL density 
and corresponded mainly to transcripts enriched in aTregs (e.g., 
Ccr8; Fig. 4D). Accordingly, genes from cluster 1 showed higher 
binding to FoxP3  in published ChIP-seq datasets (Fig.  4E), with 
H3K27Ac EPL intensity also biased for cluster 1 transcripts (Fig. 4F). 
Overall, cluster 1 genes tended to be expressed at somewhat higher 
levels than cluster 2 [median of 341 transcripts per million (tpm), 
0.05 to 0.95 range (27 to 3576) versus 76 (26 to 1417)], but genes 
in both clusters were up-regulated by FoxP3 and overexpressed 
in WT relative to FoxP3-deficient Treg-like cells (Fig. 4G).

We then asked, across all single cells, how the expression of indi-
vidual genes of clusters 1 and 2 (approximated by the “gene accessi-
bility score”) correlated with that of FoxP3. The rationale was that, 
whereas all these genes appear FoxP3 dependent (as defined by the 
“sledgehammer” effect of FoxP3 deletion), their instant expression 
may respond differently to fluctuations in FoxP3 between individual 
cells. Cluster 1 genes had some positive correlation with Foxp3 
(Fig. 4H). In contrast, genes of cluster 2, which are largely devoid of 
FoxP3-decorated EPLs, lacked this correlation (and was even slightly 
negative on average). This dichotomy might actually be what one 
would expect if cluster 1 were under direct and positive activation 
by FoxP3, whereas cluster 2 genes responded to indirect control by 
FoxP3. Thus, the partition of FoxP3-dependent genes into clusters 
independently marked by FoxP3 EPL density suggests that different 
regulatory mechanisms are at play in the different groups of FoxP3- 
dependent genes, with different levels of direct FoxP3 involvement.

Distinct FoxP3 interaction at promoters and enhancers
FoxP3 binding across the Treg genome occurs at distal enhancers 
and in proximal promoter regions (32, 41). It is unknown whether 
FoxP3 functions similarly in both locations. We assessed whether 
FoxP3 bound to the promoter or enhancer ends of the loops, based 
on the consensus ChIP-seq map described above. EPLs associated 
with FoxP3 on either promoter or enhancer sides or both (Fig. 5A). 
This dichotomy was unrelated to the clusters of Fig. 4 and not merely 
due to sparse sampling or arbitrary thresholds because FoxP3 bind-
ing was truly absent on the “other” side (Fig. 5B). Further, EPLs 
with FoxP3 on both sides were not a random occurrence because 
they occurred more frequently than through chance association 
(chisq P < 0.01). High chromatin accessibility and H3K27Ac signal 
intensity coincided with the side of the EPL bound by FoxP3 
(fig. S7A), confirming FoxP3’s association with the most highly 
active chromatin. A clue as to the significance of FoxP3 placement 
relative to EPL ends came from Gene Ontology analysis of the 
corresponding genes. Generic programs linked to nucleic acid 
metabolism (e.g., cell cycle and DNA repair) dominated for genes 
with promoter-side FoxP3 EPL, whereas more immune-specific 
ontologies (cytokine signaling and adaptive immune system) were 
enriched among enhancer- and dual-sided modes (Fig. 5C and data 
file S4). FoxP3-dependent loci belonging to cluster 1 described 
above were predominantly associated with enhancers (only 3 of 
24 were of the promoter-side category).

FoxP3 collaborates with other TFs; these interactions determining 
its transcriptional specificity (26, 27, 31) and their binding motifs 
are enriched in the vicinity of FoxP3-binding sites (32, 41). FoxP3 
positioned at either the promoter or enhancer sides of EPLs appears 
to interact with distinct cofactors (Fig. 5D and fig. S7B), as shown 
by motif enrichment analysis (using as background comparators all 

TSS and all non-TSS OCRs, respectively). TATA-box motifs were 
enriched at promoter positions, whereas Runx and Ctcf motifs were 
overrepresented at enhancers, and motifs for SP1, Ets, Irf/Stat, and 
the nuclear receptor family factors (Ror/) were enriched on both 
sides. Together, these results delineate different aspects of FoxP3- 
mediated regulation, with distinctive transcription programs and 
TF cofactor preference across FoxP3 EPLs.

DISCUSSION
To better understand the program controlled by the lineage- 
identifying factor FoxP3, we explored enhancer-promoter connec-
tivity in true Treg and Tconv cells ex  vivo and how FoxP3 is 
associated with this architecture. The results lay out the landscape 
of enhancer elements that are connected to promoters of different 
genes in CD4+ T cells and should thus serve as a roadmap to sup-
port cis-regulation studies in these cells. Reinforcing the identity of 
FoxP3 as a positive transactivator, they establish how FoxP3 associ-
ates with a wide range of active EPLs and positively potentiates their 
representation for a set of genes that are central to Treg physiology.

Previous models of enhancer regulation (46, 60–62) have 
hypothesized additive or even multiplicative enhancer activity. In 
the primary cells analyzed here, there was a significant but modest 
correlation between enhancer-promoter connectivity and mRNA 
levels in these two closely related CD4+ T cells. The absence of a 
linear relationship is consistent with the notion that simply estab-
lishing a connection between an enhancer and a promoter is not 
sufficient for transactivation but that secondary events (recruitment 
of additional factors and posttranslational modification of these 
cofactors) are necessary to functionally potentiate the connection. 
Cumulative EPL intensities for individual genes distributed as a 
very broad range, with a subset of highly connected T cell genes, in 
line with recent work in neurons which identified a subset of 
“superinteractive promoters” (48). Such highly connected loci may 
be rationalized by the need for more complex transcriptional hubs 
for variegated regulation.

A key goal was to understand whether and how FoxP3 is in-
volved with enhancer-promoter connectivity. Does it promote loop 
formation or tune the transactivation potential of preestablished 
loops—the latter in keeping with the observation that, unlike other 
TFs that specify immunocyte lineages such as PU.1 or Pax5, FoxP3 
opportunistically exploits already open chromatin and has limited 
“pioneer” activity—or does it have little influence, only acting indi-
rectly, as suggested elsewhere (52)? In general, FoxP3 associated 
with the most epigenetically active chromatin, as did Yy1. Several 
lines of evidence established that, once associated with an EPL, 
FoxP3 mostly exerts an enhancing influence on enhancer-promoter 
connectivity, e.g., by stabilizing them: (i) H3K27Ac EPLs that are 
also associated with FoxP3  in Tregs are more intense in Tregs than 
they are in Tconvs; (ii) these same EPLs lose intensity when FoxP3 
is genetically inactivated; in other words, when FoxP3 is absent, 
these enhancers are less connected to their cognate promoters. The 
functional relevance of these effects is established by the observa-
tion that these enhanced connections are found for genes whose 
expression is known to be positively transactivated by FoxP3.

Different generations of chromatin immunoprecipitation 
(31, 32, 41, 52, 63, 64) showed that FoxP3 associates with many 
genomic regions that are nowhere near the Treg-specific loci. In this, 
FoxP3 is not unlike many other TFs (65). Our results now show that 
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these apparently inactive locations actually correspond to true 
enhancer-promoter connections, even at loci that have no clear Treg 
relevance (38% of Treg-neutral genes have a FoxP3-decorated EPL). 
An interpretation consistent with the cofactor model is that these 
positions simply lack the appropriate cofactors or epigenetic modi-
fying enzymes or that FoxP3 or its cofactors are not suitably modi-
fied at these locations to actually influence transcription. FoxP3 
may be truly inert at these locations, or it might provide buffering or 
stabilizing influence (61, 62, 65). At FoxP3-dependent loci that are 
overexpressed in Tregs, high-intensity FoxP3 EPLs were observed at 
many core signature genes, which strongly suggest a positive and 
direct transactivation, in contrast to the indirect model recently 
proposed (52). In contrast, an indirect modality for FoxP3-dependent 
repression is consistent with the dearth of FoxP3 EPLs at the Il2 
locus. But indirect repression by FoxP3 is not a general characteristic 
of Treg-underexpressed loci because Lef1 and Tcf7 genes themselves 

show abundant FoxP3-associated EPLs, consistent with the notion 
that FoxP3 can act as a direct repressor when paired with the appro-
priate cofactors (31).

Last, the dichotomy between loci at which FoxP3 associates on 
the enhancer or the promoter sides of EPLs implies a geographical 
variation of its direct regulatory functions. This demarcation 
parallels recent results in B cells where distinct multi-TF hubs bind 
to promoter versus distal enhancer sites (66). The enrichment 
analysis (Fig. 5D) suggests that the factors with which FoxP3 asso-
ciates on the enhancer or the promoter sides are different, suggesting 
different modes of operation. It is also possible that this repartition 
is dynamic [per (12, 13)], and one could speculate for instance that, 
upon rapidly acting cell triggering, FoxP3 already bound to the 
promoter region serves to further stabilize/potentiate an EPL 
through dimerization with another FoxP3 molecule recruited to the 
enhancer side.
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In terms of how FoxP3 determines Treg identity, parsing the group 
of FoxP3-dependent genes by correlation analysis of chromatin accessi-
bility across single Tregs distinguished two groups of genes, among 
those positively controlled by FoxP3. The larger cluster was asso-
ciated with abundant FoxP3-decorated EPLs, indicative of direct and 
positive transactivation. The second, smaller, cluster grouped genes 
are associated with markedly less FoxP3-bound EPLs. Genes of this 
second cluster include genes that are overexpressed in aTreg rela-
tive to rTreg, and these might correspond to indirect control (52).

These results, as well as those from (25) and (52), suggest a 
multimodal set of actions through which FoxP3 helps determine 
Treg identity and stability: (i) direct control, both activating and 
repressive, of a range of target loci, particularly a core set of transcripts 
essential for Treg homeostasis; (ii) repression of TFs that otherwise 
favor the Tconv program; (iii) stabilization of a Treg program that is 
not directly FoxP3 dependent.

MATERIALS AND METHODS
Study design
The control of Treg-specific gene expression is mediated by the 
action of FoxP3 on chromatin. To derive the direct mode of FoxP3 
activity on chromatin, we biochemically mapped FoxP3-associated 
EPLs using HiChIP in primary mouse Tregs. Mapping FoxP3 EPLs 
on a general roadmap of enhancer-promoter looping mediated by 
HiChIP H3K27Ac in Tconv and Tregs provided a deeper under-
standing of FoxP3-specific control on its target genes. Specificity of 
HiChIP experiments was ensured by including biological replicates, 
a negative isotype IgG control HiChIP, comparable sequencing 
depth across samples, and prioritizing EPLs using a null model of 
proximity ligation events. We validated the extent of FoxP3-associated 
EPLs in promoting active regulation of its targets through genera-
tion of a FoxP3 KO mouse model. H3K27Ac HiChIP of FoxP3-WT 
and FoxP3-KO Tregs shifted EPL activity at FoxP3-associated EPLs 
and core Treg programs. To address the direct nature of FoxP3 on gene 
targets, we integrated Treg scATAC-seq and FoxP3 EPLs, which re-
solved specific cluster of Treg-specific transcripts that covary in their 
chromatin accessibility and are directly controlled by FoxP3 looping.

Mice
C57BL/6J (B6) and B6.Foxp3Thy1.1 (67) mice were obtained from the 
Jackson Laboratory and bred in the specific pathogen–free facility at 
Harvard Medical School (HMS). All experimentation was performed 
following animal protocols approved by the HMS Institutional Animal 
Use and Care Committee (protocol IS00000054). FoxP3-deficient 
mice (B6.Foxp3fs327-gfp/Doi) were generated by CRISPR mutagenesis 
of the B6.Foxp3ires-GFPKuch line (54). Briefly, the Foxp3-IRES-GFP 
allele carries a 1-bp insertion in exon 11 (NM_054039.2), at the 
position encoding FoxP3 amino acid 327, leading to a frameshift 
mutation that would produce a truncated protein terminating after 
34 amino acids and thus lacking the essential C-terminal forkhead 
DNA binding domain (fig. S5A). Males carrying the mutant allele 
present with a typical Scurfy-like phenotype of FoxP3 deficiency, 
with a wasting syndrome starting at 12 to 15 days of age (failure to 
thrive, cachexia, extensive exfoliative dermatitis, tail necrosis, crusty 
eyelids and ears, marked lymphadenopathy, and splenomegaly) 
leading to death around 30 to 35 days. Heterozygous females are healthy 
and do not show any clinical signs of inflammation. The germline 
mutation was maintained onto the B6 background. For the experiments 

reported here, females carrying either the normal Foxp3ires-GFPKuch 
or the deficient Foxp3fs327-gfp alleles were crossed to B6.Foxp3Thy1.1 father 
(the FoxP3-Thy1.1 reporter was used to identify in the offspring 
normal Tregs that express the WT balancing allele in these crosses). 
To improve the comparability between parallel fs327 and WT offspring 
in these experiments, the Foxp3ires-GFPKuch and Foxp3fs327-gfp carrier 
mothers were cohoused and bred to the same B6.Foxp3Thy1.1 father.

T cell isolation
For analyses in FoxP3-proficient mice, splenic CD4+ T cells from 
FoxP3-Thy1.1 hemizygous male mice were first enriched using a 
CD4 untouched kit (Miltenyi), followed by secondary purification 
with anti-CD90.1 microbeads (Miltenyi) according to manufacturer’s 
instructions. Tconv (FoxP3−Thy1.1−Tcrb+CD4+CD45+CD19−CD8− 
CD11b−CD11c−) and Treg

s (FoxP3−Thy1.1+Tcrb+CD4+ and CD45+ 
CD19−CD8−CD11b−CD11c−) were sorted on a FACS-Aria to 96 and 94% 
purity, respectively. For experiments in FoxP3-deficient Tregs (Fig. 3), 
CD4+ T cells from spleen and peripheral lymph nodes from 6-week-old 
heterozygous females were first enriched as above by negative magnetic 
selection (STEMCELL Technologies), and Treg-like cells were sorted as 
CD19−TCR+CD4+Thy1.1−GFP+ on a Moflo Astrios (Beckman Coulter).

H3K27Ac, FoxP3, Yy1, and IgG HiChIP
HiChIP (9) was optimized and performed in biological replicates 
for all conditions. Briefly, 5 × 106 Tregs were cross-linked for each 
FoxP3 HiChIP replicate, 2 × 106 million cells for H3K27Ac and Yy1 
HiChIPs, respectively. In addition, 5 × 106 million Tregs and Tconv 
cells were cross-linked to include a negative IgG isotype control 
HiChIP samples. Low-input H3K27Ac HiChIP was performed on 
2 × 105 cross-linked WT-GFP and KO-GFP Tregs, respectively. 
DNA sonication of fragments to 200 to 600 bp after Mbo I digestion 
was performed using the Covaris M220. Sonicated DNA was pre-
cleared using Protein A magnetic beads followed by overnight 
chromatin immunoprecipitations with 3 g of H3K27Ac (Abcam 
ab4729), 5 g of FoxP3 (Abcam ab150743), 3 g of Yy1 (Abcam 
ab109237), and 5 g of rabbit IgG (Cell Signaling Technology, 
2729S), in a final concentration of 0.07% SDS. Libraries were prepared 
using an Illumina Nextera DNA library preparation kit, size-selected 
using low-melt gel extraction, and paired-end–sequenced using 
NextSeq 500 Illumina platform.

Single-cell ATAC-seq
scATAC-seq data were generated as part of another study. Briefly, 
splenic Tregs (CD4+, TCR+, and FoxP3−IRES−GFP+) and Tconv 
cells (CD4+, TCR+, and FoxP3−IRES−GFP−) were sorted from 6- to 
8-week-old B6 FoxP3-IRES-GFP mice into Dulbecco’s modified 
Eagle’s medium + 2% fetal calf serum and then resuspended in 
phosphate-buffered saline + 0.04% bovine serum albumin. Nuclei 
isolation, transposition, Gel Bead-In EMulsions (GEM) generation, 
and library construction targeting capture of ~12,000 cells (75% 
Tregs and 25% Tconv) were carried out as detailed in the Chromium Next 
GEM Single Cell ATAC manual (10x Genomics). Libraries were pooled 
and sequenced on an Illumina NovaSeq to a final median depth of 
about 30,000 reads per cell (~80% saturation).

RNA-seq expression data
Treg and Tconv RNA sequencing (RNA-seq) biological replicates were 
from previous work (33). RNA-seq counts were used for all gene quan-
tification. Genes were filtered on the basis of replicated and cell 
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type expression; >10 counts in both replicates and in at least one 
condition.

ChIP-seq data
ChIP-seq datasets [Kitagawa et al. (41)]; Runx1, FoxP3, Ets1, Smc1a 
(Cohesin) [Samstein et al. (32)]; and FoxP3 were mapped to mm10 
genome using bowtie2 (68). BigWig files were generated using 
deeptools2 (69).

ATAC-seq data
Treg and Tconv ATAC-seq datasets were generated in previous work (33).

CAGE data
Treg Cap Analysis of Gene Expression (CAGE) data were downloaded 
from the FANTOM repository (70).

scATAC-seq analysis
Fastq data were aligned to the mm10 reference genome and quanti-
fied per cell using Cell Ranger ATAC software (10x Genomics, v1.2). 
Peak by cell count matrices were generated by mapping reads to 
OCRs previously defined by the ImmGen consortium (33). Data 
analysis was performed using Signac v1.1 (71). For quality control, 
only cells with at least 4000 fragments per cell, greater than 55% 
reads in peaks, TSS enrichment score greater than 2, nucleosome 
signal less than 10, and ratio of blacklist-region reads less than 0.05 
were retained for further analysis. Putative doublets identified by 
ArchR v0.9.3 (72) and non-Treg, non-Tconv contaminant cells were 
also removed. We used the latent semantic indexing approach as 
previously described (59, 73). Binarized count matrices were nor-
malized using the term frequency–inverse document frequency 
transformation and reduced in dimensionality by singular value 
decomposition (SVD). Because the first SVD component was highly 
correlated with sequencing depth, components 2 to 30 were used to 
create a 2D uniform manifold approximation and projection (UMAP) 
visualization. A gene accessibility score was determined from Treg 
scATAC-seq data with ArchR v0.9.3, using an exponentially weighted 
function that accounts for the activity of distal OCRs in a distance- 
dependent manner (72) and computes a single measure of a gene’s 
accessibility. A gene-gene correlation was next determined from the 
log-normalized gene scores and visualized using a force-directed net-
work (edge-weighted using correlation coefficients). The network was 
filtered to drop weak correlations (−0.2> and <0.2). Network clustering 
was performed using correlation coefficients (edge attribute) and FoxP3 
EPL intensities (node attribute). Network visualization and clustering 
were performed using Cytoscape v3.8.0 (74).

H3K27Ac, FoxP3, and Yy1 HiChIP data processing 
and enhancer-promoter looping
HiChIP paired-end reads were aligned to the mm10 genome using 
the HiC-Pro pipeline (75). Default settings were used for removal of 
duplicated reads, assignment to Mbo I restriction fragments, and 
filtering for valid interactions. To assess EPLs in HiChIP data, we 
computed ±250-kb contacts from the gene TSS for 9058 expressed 
genes in Tregs and Tconv using the hicPlotViewpoint (76) function 
at a resolution of 5 kb. To assess a background proximity ligation 
frequency for each HiChIP experiment, we first generated a ligation 
probability background by sampling 1000 randomly selected intra-
genic regions more than 10 kb from the promoter and computing 
the relative counts using a window of ±250 kb in each HiChIP 

experiment. For each respective distance position, a Z-statistic was 
computed using the HiChIP background estimation, and adjusted 
P values were calculated to assess statistical significance of the 
contact. This procedure removed from 50 to 80% of noisy and 
biased chromatin interactions. Significant EPLs were considered if 
demonstrated enrichment across replicates, passing an FDR of 5% 
for H3K27Ac EPLs (n = 115,538) and 10% for Yy1 (12,426 EPLs), 
and enriched with respect to the negative control IgG HiChIP. In a 
similar manner, FoxP3 EPLs were also further analyzed using a 
reproducible set of overlapping 13,982 FoxP3 ChIP-seq peaks (32, 41) 
as anchors. All FoxP3 EPLs (10% FDR) were supported by FoxP3 
ChIP-seq binding for at least one end of the FoxP3 loop. 1D H3K27Ac 
HiChIP analysis was performed using all reads (including religation 
and dangling ends but excluding extrachromosomal contacts) and 
converted into tabular format [bedpe, using cLoops2 (77)] for down-
stream analysis. For each H3K27Ac EPL, 1D HiChIP signal was 
established for both the TSS and for distal anchor, and these were 
summed. Per-gene 1D H3K27Ac cumulative signal was calculated 
by summing 1D signal corresponding to all respective EPLs for each 
gene. Compartment analysis of WT-GFP and KO-GFP HiChIP was 
performed at 250-kb resolution using the eigenvector function on 
Knight-Ruiz (KR)-normalized maps (78).

Cumulative EPL intensities determined for genes
To measure the overall effect of the enhancer-promoter structure 
for a given gene, we calculated a single cumulative value by sum-
ming the respective HiChIP EPL intensities (H3K27Ac, FoxP3, and 
Yy1). In addition, the degree in connectivity was calculated by sum-
ming the total number of EPLs per gene and compared both with 
genome-wide expression and binned mRNA quantiles.

Superinteractive promoter analysis
To identify superinteractive promoters (SIPs) from Treg and Tconv 
H3K27Ac or FoxP3 HiChIP, we followed a similar strategy used by 
(48, 79). Briefly, for each gene, we summed the log10 FDR for re-
spective EPLs to derive a single cumulative score per gene. Plots of the 
ranked cumulative interaction scores in each cell type and condi-
tion were plotted. Significant SIPs were determined on the basis of 
the point of inflection within the curve (slope is equal to 1).

Differential H3K27Ac EPL analysis
Differential H3K27Ac EPLs were identified using biological repli-
cate EPL counts of Treg and Tconv EPLs (P adjusted < 0.05, FC > 2) 
determined using diffloop (80). Cumulative H3K27Ac EPL differ-
ences and comparisons with gene expression between T cells were 
mapped for all genes and specifically highlighted for the up- and 
down-regulated Treg signature program (39).

Yy1 and FoxP3 comparative analysis
Yy1 EPL and cumulative intensities were compared with FoxP3, respec-
tively, to identify TF-specific interactions (twofold, P < 0.05). Gene On-
tology analysis was performed for genes with differences between FoxP3 
and Yy1 cumulative EPL intensities (twofold) using Metascape (81).

Deriving a FoxP3-dependent signature from RNA-seq data
Data from GSE154680 (52) were downloaded. Raw read counts 
tables were normalized by median of ratios method with DESeq2 (82) 
and converted to GCT and CLS formats. Genes with a minimum 
average read count of 35 in at least one group and a coefficient of 
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variation intrareplicate less than 0.30 to 0.45 were retained. An 
uncorrected t test was used to compute differential gene expression 
between the different groups from the normalized read counts 
dataset. The FoxP3-dependent gene signature list was computed by 
merging the differential expressed genes from the aTreg and rTreg 
datasets, comparing Foxp3-GFP-DTR WT versus Foxp3-GFP KO 
and an FC of >2 or <0.5 and a P value of <0.01.

Promoter, enhancer, and dual modes in FoxP3 looping
FoxP3 ChIP-seq binding data were used to parse FoxP3 EPLs into 
those with FoxP3 occupancy at promoter, enhancer, or both (dual 
mode) ends of EPLs. Genomic heatmaps (69) were generated for 
each group either centered on FoxP3-bound positions in FoxP3 EPLs 
or centered on the strongest Treg ATAC-seq OCR for FoxP3-negative 
sides of the EPL. Gene Ontology analysis of FoxP3 modes were 
generated using Metascape (81). De novo motif analysis was per-
formed using HOMER for FoxP3-bound positions of promoter and 
enhancer EPL modalities. Significant motifs were determined using 
as background comparisons using equal numbers (10,000) in TSS and 
non-TSS OCRs. Motif significance was represented for promoter 
and enhancer FoxP3 modes using Circos plots (83).

Il2 and Il2ra centric loop analysis
To resolve higher-resolution sets of chromatin loops, we first de-
fined potential anchors from OCRs with accessibility in Tconv or 
Tregs (297,076 OCRs). HiChIP loops were defined from our OCR 
anchor set using Hichipper (84) (-peak-pad, 250 bp), which adopts 
a restriction fragment bias-aware approach for preprocessing of 
HiChIP data to call loops. Briefly, anchors were padded 250 bp in 
either direction and were considered if they overlapped MboI 
motifs. Padding anchors boost the number of paired-end tags that 
can be mapped to loops, respectively. We removed self-ligation 
loops and filtered loops that may be biased due to proximity (<3 kb) 
or low paired-end tag counts using the Mango (85) correction step 
(stage 5). This correction aggregates paired-end tag counts across 
all samples and retains significant loops (FDR < 0.01). A union set 
of loops across all data was generated: (i) loops with a minimum of 
two counts in both biological replicates, (ii) supported in at least 
one sample across all HiChIP experiments, and (iii) greater than 
twofold compared with IgG HiChIP controls. We mapped the 
hichipper-defined loops based on overlapping HiChIP EPLs for 
FoxP3, H3K27Ac, and Yy1 centering on the Il2ra and Il2 locus.

Data visualization
Analysis was performed using R-3.5.2 with all plots generated using 
ggplot2 (https://ggplot2.tidyverse.org) (86). Statistical tests are 
described in their respective sections. Browser and genome views of 
ATAC-seq and ChIP-seq data were generated using UCSC (87) and 
IGV (88). EPL arc plots were generated using DNARchitect (89). 
HiChIP heatmaps were generated using HiC-Pro by merging valid 
pairs of replicates and processed as .hic files using the hicpro2juicebox 
function (75) and visualized using Juicebox tools (78).

SUPPLEMENTARY MATERIALS
www.science.org/doi/10.1126/sciimmunol.abj9836
Figs. S1 to S7
Table S1
Data files S1 to S4

View/request a protocol for this paper from Bio-protocol.
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FoxP3 associates with enhancer-promoter loops to regulate T
reg

-specific gene
expression
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Looping in FoxP3
The identity and function of T regulatory cells (T

regs

) relies on the activity of the transcription factor FoxP3, but its precise
mechanism of action in controlling T

reg

-specific gene expression is not well understood. Using chromatin conformation
capture with immunoprecipitation (HiChIP), Ramirez et al. mapped the enhancer-promoter architecture of conventional
CD4

+

 T cells and T
regs

 and then identified FoxP3-interacting enhancer-promoter loops (EPLs). FoxP3 interacted with
EPLs at core T

reg

 signature genes and was associated with increased enhancer-promoter connectivity, while genetic
inactivation of FoxP3 resulted in decreased H3K27Ac looping at the same loci. These results provide insight into
FoxP3’s interactions with EPLs and support a model in which FoxP3 directly regulates expression of many of its target
genes through enhancer-promoter connections.
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