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Certain MHC-II or HLA-D alleles dominantly protect from particular
autoimmune diseases. For example, expression of the MHC-II Eα:Eβ
complex potently protects nonobese diabetic (NOD) mice, which
normally lack this isotype, from spontaneous development of type
1 diabetes. However, the underlying mechanisms remain debated.
We investigated MHC-II–mediated protection from type 1 diabetes
using a previously reported NOD mouse line expressing an Eα trans-
gene and, thereby, the Eα:Eβ complex. Eα16/NOD females vertically
protected their NOD offspring from diabetes and insulitis, an effect
that was dependent on the intestinal microbiota; moreover, they
developed autoimmunity when treated with certain antibiotics or
raised in a germ-free environment. Genomic and proteomic analyses
revealed NOD and Eα16/NOD mice to host mild but significant dif-
ferences in the intestinal microbiotas during a critical early window
of ontogeny, and transfer of cecal contents from the latter to the
former suppressed insulitis. Thus, protection from autoimmunity
afforded by particular MHC/HLA alleles can operate via intestinal mi-
crobes, highlighting potentially important societal implications of treat-
ing infants, or even just their pregnant mothers, with antibiotics.
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Type 1 diabetes (T1D) is an autoimmune disease characterized
by T cell-provoked destruction of the insulin-producing β-cells

of the pancreatic islets of Langerhans. Development of autoim-
mune diabetes is regulated by multiple genetic polymorphisms and
largely unknown environmental factors. This and many other au-
toimmune diseases have their strongest genetic association with
the HLA-D locus (1). Certain HLA-D haplotypes, such as
DRB1*0401-DQB1*0302 and DRB1*0301-DQB1*0201, confer
elevated risk for T1D; others, notably DRB1*1501-DQB1*0602,
promote dominant protection (estimated to be as high as 97%)
(2). Interestingly, an HLA allele that protects from one autoim-
mune disease can promote another.
The nonobese diabetic (NOD) mouse strain is the most widely

studied animal model of autoimmune diabetes. All NOD mice
develop a leukocytic infiltrate in their pancreatic islets, termed
insulitis, around 3–4 wk of age, and a fraction of them progress to
overt diabetes starting at about 12–14 wk, depending on the par-
ticular colony. Similar to the disease in humans, diabetes in NOD
mice is a T cell-dependent, polygenic disorder that is modified by
environmental factors. Parallel to the situation in humans, the
MHC locus is by far the dominant genetic determinant in mice (1).
The NOD strain expresses an unusual MHC-II A complex, termed
Ag7, and does not express an E complex due to deletion of the Eα
promoter (3). Remarkably, NOD mice genetically modified to
express the Eα molecule in the appropriate cells, are completely
protected from T1D and are either entirely or nearly devoid of
insulitis (4–6).

Thus far, there is no clear consensus on the mechanism of
E-mediated protection from T1D. An early model proposed that
E complex expression leads to clonal deletion or anergizing of
autoreactive T cells (7). But such a mechanism was rendered
unlikely when clonal deletion in E-expressing NOD mice could be
dissociated from protection from insulitis (5), and when E ex-
pression in the thymus was found to be neither necessary nor
sufficient for protection (8). In addition, E+ NOD mice have islet
cell-reactive T cells that can transfer disease to T cell-deficient
NOD mice, arguing that they have a diabetes-competent T lym-
phocyte repertoire (9, 10). A second model argued for altered
autoantigen presentation in E-expressing NOD mice: the E
complex would outcompete Ag7 for limited pathogenic peptides.
This mechanism also proved unlikely because E+ and E− antigen-
presenting cells (APCs) from NOD mice similarly present peptide
to and prime autoreactive T cells in vitro and in vivo (11, 12). A
third proposed mechanism, that E complex expression alters the
cytokine skewing of CD4+ T effector cells or promotes the gen-
eration of Foxp3+ T regulatory (Treg) cells, has been supported by
data from some studies (5) but refuted by results from others (13).
There is a critical role for nongenetic (e.g., environmental)

factors in the development of T1D in both humans and mice.
The rapid rise of T1D incidence over the past few decades argues
for an important nongenetic component to the pathogenesis of
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T1D (14), as do epidemiologic studies demonstrating that mono-
zygotic twins have less than 50% concordance for T1D (15).
Recent results have highlighted a role for the intestinal microbiota
in promoting or protecting from several autoimmune diseases,
including this one (16, 17). Since a few reports have suggested
that MHC/HLA complexes can influence microbial coloniza-
tion of the gut (18, 19), although others have appeared to dis-
agree (20), we hypothesized that E-mediated protection from
NOD autoimmunity might be an indirect effect, channeled
through influences on the intestinal microbiota. Using multi-
ple experimental approaches, we demonstrate this hypothesis
to be true.

Results
Eα16/NOD Dams Transmitted Protection from Insulitis and T1D Vertically
to Their NOD Progeny. Since the maternal and neonatal environments
can influence diabetes development in both NOD mice (21) and
humans (22), we began by investigating whether protection from
diabetes could be vertically transferred from an Eα16/NOD dam to
her NOD progeny. Diabetes incidence was compared in cohorts of
female NOD mice born to either NOD dams mated to Eα16/NOD
sires or to the reciprocal combination. NOD progeny of Eα16/NOD
dams had a significantly reduced incidence (39% vs. 65%) and
delayed onset (21 vs. 14 wk of age) of diabetes vis á visNODprogeny
of NOD dams (Fig. 1A). Since multiple checkpoints are involved in
the development of T1D, we investigated whether insulitis was also
affected, and found that the NOD progeny of Eα16/NOD dams had
significantly reduced insulitis as well (Fig. 1 B and C).
Genetic imprinting, maternal antibody transfer, and microbiome

colonization are all possible mechanisms for such vertically trans-
mitted protection. Since the microbiota can protect NOD mice
from disease development in certain circumstances (17), we tested
whether maternal microbes were responsible for E-mediated ver-
tical suppression of insulitis by giving vancomycin in the drinking
water of Eα16/NOD mothers during their last 7–10 d of pregnancy.
This treatment resulted in an insulitis frequency in NOD progeny
of Eα16/NOD dams that was significantly higher than that of off-
spring from their untreated counterparts, and was indistinguishable
from that of progeny from standard NOD dams (Fig. 1D). Thus,
E-mediated protection from autoimmunity was, at least to a de-
gree, vertically transmitted to NOD progeny and was microbiota-
dependent.

Treatment with Certain Antibiotics Induced Insulitis and Altered the
Intestinal Microbiome in Eα16/NOD Mice. This conclusion implied
that disruption or loss of the microbiota in Eα16/NOD mice might
induce autoimmunity. As a first approach to evaluating this possi-
bility, we gave female Eα16/NOD mice antibiotics in the drinking
water, choosing vancomycin, metronidazole, neomycin, and ampi-
cillin to survey a broad range of microbe sensitivities. Oral treat-
ment from 3 to 6 wk of age with vancomycin or metronidazole, but
not with neomycin or ampicillin, induced insulitis in a fraction of
the Eα16/NOD mice (Fig. 2A); when it appeared, islet infiltration
could be quite severe (Fig. 2B). While the fraction of Eα16/NOD
mice showing insulitis under these conditions was quite low, this
result contrasted with the extremely rare and mild insulitis ob-
served with their untreated counterparts. Nonetheless, we sought
to further optimize the treatment protocol. The effectiveness of
vancomycin treatment showed a clear age-dependence. Giving this
antibiotic either from the last 7–10 d of pregnancy until 3 wk after
birth (optimally) or from 3 to 6 wk of age induced insulitis in
Eα16/NOD mice, but administering it from 6 to 10 wk of age did
not (Fig. 2C).
Since oral vancomycin is not systemically absorbed, it appeared

that disruption specifically of the intestinal microbiota might induce
autoimmunity in a fraction of Eα16/NODmice. We addressed this
possibility by characterizing the fecal microbiome of vancomycin-
treated pregnant dams, their progeny, and control mice unexposed

to vancomycin by sequencing the V4 region of the 16S ribosomal
RNA (rRNA) gene. As expected, oral administration of vanco-
mycin changed the intestinal microbiome (reflected in feces) of
the Eα16/NOD pregnant dams; the altered maternal microbiome
was transmitted to their progeny, persisting through 10 wk of age
(Fig. 2D). Principal coordinates analysis (PCoA) of unweighted
UniFrac distances, with each dot representing the microbiome of
an individual mouse, indicated that mice directly or indirectly
exposed to vancomycin clustered separately from those that re-
ceived no antibiotic (Fig. 2E, Upper). Most interesting, the altered
microbiota was transmitted from vancomycin-treated Eα16/NOD
dams to pups that had not been directly exposed to vancomycin.
Consistent with this observation and the expected normalization
of microbial flora over time, the maternal microbiomes clustered
closer to those of their 3-wk-old than their 10-wk-old progeny
(Fig. 2E, Lower).
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Fig. 1. Eα16/NOD dams transmitted protection from insulitis and T1D verti-
cally to their NOD progeny. (A) Diabetes incidence in a cohort of NOD mice
born to NOD dams (n = 34), NOD mice born to Eα16/NOD dams (n = 24), and
Eα16/NOD mice (n = 20). ***P = 0.0004 (Gehan–Breslow–Wilcoxon test).
(B) Proportion of islets with insulitis or peri-insulitis at 10 wk of age. NOD mice
born to NOD dams mated with NOD sires, NODmice born to NOD dams mated
with Eα16/NOD sires, NOD mice born to Eα16/NOD dams mated to NOD sires,
and Eα16/NOD mice. (C) Composite insulitis score for each mouse in B. ***P =
0.001, **P = 0.005 (Mann–Whitney test). (D) Composite insulitis scores for
vancomycin-treated Eα16/NOD dams that received oral vancomycin during the
last 7–10 d of pregnancy. ***P = 0.0005, *P = 0.02 (Mann–Whitney test).
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Furthermore, we generated germ-free (GF) NOD and Eα16/
NOD mice, and compared their degrees of insulitis. Sixty percent
of GF Eα16/NODmice showed substantial insulitis, with a severity
similar to that of both their GF NOD littermates and standard
NOD mice (Fig. 2 F and G). In short then, data from both the
antibiotic-treatment and GF-housing experiments argued that
microbes were critical elements of E-mediated protection from
NOD diabetes. While the effects were not completely penetrant, it
is important to keep in mind that only a few untreated Eα16/NOD
individuals from our colony, of the hundreds examined over the
past 25 y, exhibited any insulitis (5).

Eα16/NOD Mice Hosted a Distinct Intestinal Microbiome Early in
Ontogeny. Islet autoimmunity begins when diabetogenic β-cell–
derived self-antigens first appear in the pancreas-draining lymph
nodes (PLNs) at days 15–18 in NOD mice (23), which also cor-
responds to the time when lymphatic connections from the gas-
trointestinal tract to the PLNs develop (24). Therefore, we tested
whether expression of the E molecule impacted the microbiome of
18-d-old mice via 16S rRNA gene sequencing of cecal contents. To
avoid detecting spurious associations between E-molecule expres-
sion and microbial taxa due to maternal or cage effects, we com-
pared only cohoused NOD (n = 25) and Eα16/NOD (n = 25)
littermates. The α-diversity of the cecal contents microbiome was

significantly higher in Eα16/NOD than in NODmice, and β-diversity
was significantly lower, indicating that the microbiomes of the two
types of mice were distinct (Fig. 3 A and B). Taxonomic compari-
sons by generalized linear mixed-effects modeling revealed a higher
representation of microbes from the order Clostridiales [false-
discovery rate (FDR) -corrected P = 1.2 × 10−3] and a lower pro-
portion of the genus Blautia (FDR-corrected P = 7.2 × 10−6) in the
microbiomes of Eα16/NOD mice (Fig. 3C, Fig. S1, and Table S1).
Since certain tissue-associated microbes may engender specific

immune responses, we next investigated whether cecal tissue-
associated microbes were differently represented between Eα16/
NOD and littermate NOD mice. Consistent with the findings in
cecal-content microbiomes, a higher representation of microbes
from the order Clostridiales (FDR-corrected P = 1.4 × 10−7) and a
lower proportion of the genus Blautia (FDR-corrected P = 2.7 ×
10−14) were present in the cecal tissue microbiomes of Eα16/NOD
mice (Fig. 3C, Fig. S1, and Table S1).
The microbiota differences were not uniform in all mice from

different cages (Fig. S1), suggesting redundancy in the range of mi-
crobes affected by the E molecule. Therefore, we sought to identify
combinations of operational taxonomic units (OTUs) affected by E
(and interfering with diabetes) by constructing Random Forest
classifiers of E or N genotypes based on the microbiome profiles.
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While success rates of 80–87% could be obtained, these proved not
significantly different from chance by permutation analysis.
We also exploited a metaproteomic approach to investigate mi-

crobial protein expression in feces from littermate Eα16/NOD vs.
NOD mice at day 18 and day 70 (n = 24 mice in total). Microbial
proteomic data were aggregated according to both functional and
taxonomic annotations (1,078 different functional-taxonomic fea-
tures identified). α-Diversity was again significantly higher in Eα16/
NOD individuals at day 18 and day 70. β-Diversity analysis revealed
a strong cage/littermate effect at day 18, and clustering by mouse
genotype at day 70 (Fig. S2).
Both the genomic and proteomic data argued that the Eα16/NOD

and NOD microbiota were distinct during early life. The intestinal
microbiomes of Eα16/NOD mice showed increased α-diversity,
which has been associated with protection from T1D in genetically
susceptible mice and humans (25, 26). To directly confirm this
conclusion, we compared the ability of intestinal microbiota from
Eα16/NOD vs. NOD donors to protect NOD recipients from insu-
litis. NOD mice gavaged twice weekly from 2 to 5 wk of age with
Eα16/NOD cecal contents had a significantly reduced insulitis se-
verity (median insulitis score of 0.55 vs. 1.23) compared with that of
controls gavaged in parallel with NOD cecal contents (Fig. 3D).

Comparing the IgA-Bound Repertoire of Cecal Bacteria in NOD and
Eα16/NOD Mice. To explore one possible mechanism for
E-mediated, microbiota-dependent protection in the NOD model
of T1D, we investigated the IgA response to gut bacteria in NOD
and Eα16/NOD littermates born to NOD mothers, using the re-
cently developed IgA-seq method (27), to interrogate the com-
position of microbes that are bound, or not, to IgA molecules in
the intestinal contents. Eα16/NOD and NOD littermates did not
differ in the flow cytometric frequency or mean fluorescence in-
tensity of IgA-coated cecal bacteria (Fig. S3), contrary to pre-
vious data demonstrating fluctuations in the proportion
of IgA+ stool bacteria depending on the host MHC allele
(19). In our IgA-sequencing data, direct comparisons between
the genotypes revealed no OTUs that had significantly dif-
ferent IgA-coating index (ICI) values for either age group
(Fig. 4 A and B). However, the LEfSe biomarker discovery tool
(28) flagged a handful of OTUs that were overall differentially
IgA-coated between NOD and their Eα16/NOD counterparts
(Fig. 4 C and D), albeit with rather low scores. All four of the
OTUs with higher representation in the Eα16/NOD IgA-coated
microbiomes were from the order Clostridiales, while those
with higher representations in NOD microbiomes were from
the orders Clostridiales, Oceanospirillales, and Pseudomo-
nales. When displayed on a per mouse basis and accounting
for cage of origin, it appeared that the differential signals
were scattered, with little uniformity, and were mostly due

to a few mice (Fig. S3). We again applied a Random Forest
approach to identify an effect of E on IgA coating of combi-
nations of microbes, but no groups of OTUs were identified
whose ICI significantly distinguished (by permutation testing) the
two genotypes.

Investigating the Intestinal Immune System in Eα16/NOD Mice. Fi-
nally, we explored whether the early-life microbiome alterations
found in Eα16/NOD mice were associated with changes in the
intestinal immune system. The innate and adaptive immune-
system cell populations of the lamina propria of the large and
small intestines, PLNs, Peyer’s patches, cecal patch, and spleen
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showed no robust differences in Eα16/NOD vs. NOD littermates,
according to fraction and number of CD4+ T-helper cells
expressing IFN-γ, IL-17, IL-10, or IL-22, CD8+ T cells, and mye-
loid cell populations, such as CD103-expressing cells. Since MHC-
II expression on innate lymphoid cells (ILCs) is necessary to
maintain homeostasis with commensal microbiota (29), we also
compared the number and frequency of ILCs expressing the
transcription factors Gata-3 or Rorγ, along with the number and
frequency of ILC3 expressing IFN-γ, IL-17, or IL-22, and found no
consistent differences (Fig. S4). However, we did observe an in-
creased regulatory Treg cell frequency in the cecal lamina propria of
Eα16/NODmice at day 18 (Fig. 5 A and B). In contrast, there were
similar populations of Treg in the small and large intestines, Peyer’s
patches, cecal patch, and the PLNs (Fig. 5C).

Discussion
An association between certain MHC and HLA class II alleles and
protection from particular autoimmune diseases, notably T1D, was
discovered decades ago; yet the mechanisms underlying this domi-
nant protection have remained mysterious. Here we showed that
commensal microbes drove E-mediated protection from autoim-
mune diabetes, and that expression of the E complex shaped the
intestinal microbiome during a critical early window of ontogeny.
How might E complex expression shape the intestinal micro-

biota in young NOD mice? One possibility is that an additional
restriction element, the E complex, could allow immune responses
against additional microbial antigens, thereby shaping the de-
veloping microbiota. In particular, there could be an effect on the
nascent IgA repertoire via presentation of additional microbial
antigens, and IgAs are known, in turn, to shape the intestinal
microbiota (19, 30). We tested the hypothesis that the type of
MHC class II allele present would influence the affinity and
specificity of the IgA produced in response to the intestinal
microbiota of young Eα16/NOD vs. NOD mice. However, we saw
no differences in the composition of IgA-bound bacteria. None-
theless, IgA binding may alter microbial localization and function
without detectible impacts on microbiota composition, as has been
reported in some contexts (31).
Second, E expression might influence antimicrobial peptide

(AMP) secretion from intestinal epithelial cells. Expression of

the E complex on APCs, leading to more cognate interactions
with CD4+ T cells, could enhance APC activation, which in turn
could trigger intestinal epithelial cells to secrete AMPs, known to
impact intestinal microbiota localization and composition (32,
33). Third, E complex expression might promote host production
of a microbe-specific metabolic substrate, conferring a selective
advantage to specific microbes that can use this resource (34).
How does the Eα16/NOD intestinal microbiota prevent auto-

immunity? A likely possibility is that the microbiome influences
the development of the local intestinal immune system that, in
turn, somehow prevents insulitis. Indeed, the intestinal micro-
biome changes in Eα16/NOD mice occurred at the time insulitis
typically initiates (∼3 wk of age) (23). This timing corresponds to a
wave of islet cell apoptosis (35) and establishment of a lymphatic
connection between the intestinal immune system (24) and the
PLNs, which is critical for the development of insulitis and T1D
(36). The notion of an intestinal impact on the development of
T1D is supported by studies in humans and mice, and is often
referred to as the “leaky gut hypothesis” (37). In support of a role
for the E complex working via such mechanisms, cell transfer
experiments indicated that protection is mediated by the E-
expressing macrophage or dendritic cell lineage (13), which is
supported by genetic ablation studies showing a requirement for
E-expression on the CD11c+ but not CD19+ cell lineage (12). Our
observation of increased Treg cell proportions in the cecum of
Eα16/NOD mice could represent an effect of early-life microbial
stimulation on CD11c+ tolerogenic dendritic cells. Interestingly,
Ooi et al. (38) have recently reported that the dominant protective
effect of HLA-DR1 allele on development of Goodpasture’s dis-
ease can be attributed to shaping of the self-epitope–specific
Treg repertoire.
Perhaps our study’s most important message is a societal one,

assuming a translation of our findings on the NODmodel to human
T1D patients. Antibiotic treatment of infants, or just their preg-
nant mothers, can potentially subvert ordinarily potent diabetes-
protective genetic elements.

Materials and Methods
Mice. The generation of Eα16/NODmice has previously been described (5). All
mouse experiments were approved by the Institutional Animal Care and Use
Committee of Harvard Medical School.

Diabetes and Insulitis Assessments. Diabetes and insulitis were assessed as
previously described (39). Insulitis was scored by two independent readers
who were blinded to the identity of the slides.

Gavage. NODmice were gavaged biweekly starting at 2 wk of age using a 22-
gauge straight oral gavage needle (VWR 20068-608) with either NOD or Eα16/
NOD cecal contents.

Antibiotic Treatment. For antibiotic treatment, 1 g/L of ampicillin sodium salt
(Sigma), 1 g/L ofmetronidazole (Acros Organics) plus the sweetener Equal 2.5 g/L,
0.5 g/L vancomycin hydrochloride (Acros Organics), or 1 g/L of neomycin (Fisher
BioReagents) were used. Pregnant dams were provided with 0.5 g/L of vanco-
mycin hydrochloride in their drinking water during the last 7–10 d pregnancy.

Sample Collection and DNA Isolation. Fresh fecal pellets, cecal contents, and
cecal tissues were collected into sterile Eppendorf tubes under a laminar flow
hood and stored at −80 °C until processing. Genomic DNA was isolated as
previously described (39).

16S rRNA Gene Sequencing and Analysis. The 16S rRNA gene sequencing of the
V4 variable regionwas performed at the Broad Institute or Biopolymers Facility
at Harvard Medical School on the Illumina MiSeq platform using the protocol
previously described (40). Sequences were processed and curated using QIIME
v1.9.0, as pick_closed reference otus.spy (41). To control for maternal and cage
effects, each sample’s α-diversity value was normalized by dividing it against
the mean α-diversity value calculated from all mice from its cage. This cage-
normalized α-diversity value was then used for comparisons between NOD and
Eα16/NOD mice. To compare β-diversity, weighted and unweighted UniFrac
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distances were calculated between each pair of NOD mice and each pair of
Eα16/NOD mice. To control for maternal and cage effects, UniFrac distances
were calculated between cohoused littermate pairs.

Linear Mixed Effect Modeling. Data files from QIIME were analyzed in the R
environment. Taxondifferential abundancewas calculated for the taxa that have
greater than 1% relative abundance across all tested samples using generalized
linear mixed-effects models with genotype and sample type as fixed effects and
cage number as random effects (42). Multiple tests were corrected for FDR.

IgA-Seq Analyses. Cecal content was collected from NOD and Eα16/NOD lit-
termates, and frozen at −80 °C until further use. Sorting of IgA-bound cecal
bacteria was carried out as previously described (27).

Preparation of Intestinal Cells for Immunologic Analysis and Flow Cytometry.
Small intestine, cecum, and colon lamina propria cell suspensions and flow
cytometry were prepared as previously described (39). The cecal patch was
removed from the cecum before this tissue was used for the preparation of
the lamina propria cell suspensions.
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SI Materials and Methods
Mice. Eα16/NOD mice were maintained at the Jackson Labora-
tory, from where they were periodically imported into our specific
pathogen-free facility at the New Research Building at Harvard
Medical School. Mice were then bred at the New Research
Building and their progeny used for experiments. Mice were
maintained free of segmented filamentous bacteria, which were
confirmed by routine testing of mouse feces for the presence of
segmented filamentous bacteria by PCR, as previously described
(39). Litters were weaned at 18–21 d of age. NOD and Eα16/NOD
littermates remained cohoused. GF Eα16/NOD mice were gen-
erated by Caesarian-section delivery of Eα16/NOD and NOD
pups under aseptic conditions and fostering to GF Swiss-Webster
dams. GF NODmice were also kindly provided by A. Chervonsky,
Department of Pathology, Committee on Immunology, The Uni-
versity of Chicago, Chicago. Mice were confirmed to be GF by
aerobic/anaerobic culture and 16S rRNA gene PCR. All mouse
experiments were approved by the Institutional Animal Care and
Use Committee of Harvard Medical School.

Diabetes and Insulitis Assessments. Starting at 10 wk of age, mice
were tested weekly for the onset of diabetes by screening their urine
glucose levels (Diastix). After two consecutive positive urine glu-
cose levels, the onset of diabetes was then confirmed by blood
glucose measurement >300 mg/dL. Mice were screened until
40 wk of age. For the evaluation of insulitis, pancreata were dis-
sected and immediately fixed in 10% buffered formalin (Sigma-
Aldrich), then embedded in paraffin, sectioned, and stained with
H&E. Each islet was given a score with 0 = no insulitis, 1 = peri-
insulitis, and 2 = insulitis. At least 50 islets were scored for most
samples. The composite insulitis score for each mouse is calculated
as follows: two times the number of islets with insulitis plus the
number of islets with peri-insulitis divided by the total number of
islets per pancreas.

Cecal Contents and Tissue Collection. For cecal luminal content
sample collection, the cecum was opened longitudinally and gently
vortexed in 50-mL Falcon tubes with 5 mL of sterile PBS to release
the cecal contents. Cecal contents were transferred into three
sterile 1.5-mL Eppendorf tubes and centrifuged at 0.8 × g for
5 min. Cecal tissues were washed three times in sterile PBS. The
samples were immediately placed on dry ice and stored at −80 °C.

16S rRNA Gene Sequencing and Analysis. Sequencing was performed
according to manufacturer’s specification with the addition 5–30%
PhiX and generation of paired-end 250 base pair in length reads.
The overlapping region were stitched together and further pro-
cessed in a data curation pipeline implemented in QIIME v1.9.0
as pick_closed reference otus.spy (41). OTU tables were then fil-
tered to remove very low abundance OTUs (<0.00005%). Samples
with fewer than 10,000 sequences were excluded from analysis.
The α- and β-diversity metrics were calculated using OTU tables
rarified to 10,000 sequences. The Greengenes database, release

May 2013, was used for analysis requiring a phylogenetic tree.
P values were calculated using unpaired t test with 10,000 Monte-
Carlo simulations.

Metaproteomic Analysis.Proteins were extracted from stool samples
as described previously, without any differential centrifugation step
as pretreatment (43). Peptide mixtures were generated according
to the filter-aided sample preparation with minor modifications
detailed elsewhere (44, 45). Peptide mixtures were subjected to
LC-MS/MS analysis using an LTQ-Orbitrap Velos mass spec-
trometer (Thermo Scientific) interfaced with an UltiMate 3000
RSLCnano LC system (Thermo Scientific), according to estab-
lished procedures and parameters (46). Peptide identification was
carried out using Sequest-HT as search engine, Percolator as
peptide validator tool (both embedded in Proteome Discoverer
v1.4), and an in-house mouse gut metagenomes assembly as se-
quence database (to which mouse and soybean sequences from
UniProt, release 2015_03, were appended), as detailed in an earlier
study (46). Functional and taxonomic annotation of database se-
quences were carried out by extracting protein family information
upon blastp search (e-value threshold 10−5) against the SwissProt
database (release 2015_03), and performing lowest common
ancestor-based classification with MEGAN5 (47) upon blastp
search (e-value threshold 10−5) against the NCBI-nr data-
base, respectively. Principal component analysis of metapro-
teomic data were carried out using Perseus (coxdocs.org/doku.
php?id=perseus:start).

Preparation of Cecal Contents for Gavage. Ceca from three to five
6- to 10-wk-old NOD or Eα16/NOD mice were dissected, opened
longitudinally in a laminar flow hood, and contents were separated
from tissue by manually shaking for 10 s in 5 mL/cecum of cold,
sterile PBS. Cecal tissue was removed and the large aggregates
were allowed to settle. The cecal liquid was decanted off into
sterile Eppendorf tubes and stored at −80 °C.

IgA-Seq Analyses.Cecal content was collected fromNOD and Eα16/
NOD littermates, and frozen at −80 °C until further use. Sorting of
IgA-bound cecal bacteria was carried out as previously described
(27). Briefly, cecal contents were homogenized by bead-beating in
Lysing Matrix D tubes (MP Biomedicals). The cecal slurry was
filtered through 40 μM cell strainers and centrifuged to obtain a
bacterial pellet. Bacteria were blocked with 10% rat serum
(Jackson ImmunoResearch) in PBS containing 1% BSA, and then
labeled with a PE-conjugated anti-IgA antibody (Clone mA-6E1;
eBioscience). Samples were separated into IgA+ and IgA− frac-
tions by FACS on a FACSAria. Bacteria were pelleted and stored
at −80 °C until the DNA extraction step. DNA was isolated from
the bacterial pellets by phenol-chloroform extraction and subjected
to 16S rRNA gene sequencing as described above. The extent of
IgA-coating for any given OTU, also known as the ICI, was cal-
culated as the ratio of the OTU relative abundance in the IgA+

fraction to its relative abundance in the IgA− fraction.
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Fig. S1. Boxplots of the relative abundance of the order Clostridiales and the genus Blautia in cecal contents and tissue of 18-d-old NOD and Eα16/NOD mice
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Table S1. Differentially abundant taxa between Eα16/NOD and NOD cecal microbiomes

Taxa Tissue Estimate SE P value FDR Higher representation Statistically significant Referencing Age, d

(o) Clostridiales Cecal contents −0.39 0.083 2.5E-06 2.0E-05 Eα16/NOD * Open 18
(o) Clostridiales Cecal tissue −0.47 0.081 5.5E-09 4.4E-08 Eα16/NOD * Open 18
(o) Clostridiales Cecal contents −0.36 0.097 1.8E-04 1.2E-03 Eα16/NOD * Closed 18
(o) Clostridiales Cecal tissue −0.50 0.089 2.0E-08 1.4E-07 Eα16/NOD * Closed 18
(g) Blautia Cecal contents 0.66 0.120 3.6E-08 5.7E-07 NOD * Open 18
(g) Blautia Cecal tissue 1.03 0.125 2.1E-16 3.5E-15 NOD * Open 18
(g) Blautia Cecal contents 0.62 0.123 5.1E-07 7.2E-06 NOD * Closed 18
(g) Blautia Cecal tissue 1.02 0.129 1.9E-15 2.7E-14 NOD * Closed 18
(f) Erysipelotrichaceae Cecal tissue −0.54 0.234 2.1E-02 1.1E-01 Eα16/NOD Open 18
(f) Erysipelotrichaceae Cecal tissue −0.72 0.280 1.0E-02 4.7E-02 Eα16/NOD * Closed 18
(f) Ruminococcaceae Cecal tissue −0.43 0.178 1.5E-02 5.1E-02 Eα16/NOD Closed 18

Generalized linear mixed-effect modeling on OTUs picked by closed referencing using the Greengenes database or OTUs generated using open reference de
novo clustering. f, family; g, genus; o, order.
*P < 0.05.
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