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Aire is a fascinating transcription factor, with a unique function in 
promoting immunological tolerance of differentiating thymocytes1. 
First, it induces ectopic expression in medullary epithelial cells 
(mTECs) of a large set of genes whose products are typically associ-
ated with fully differentiated parenchymal cells (so-called ‘peripheral 
tissue antigens’ (PTAs))2. In addition, Aire controls the expression of 
factors that modulate the presentation of peptides derived from these 
PTAs by major histocompatibility complex (MHC) molecules at the 
mTEC surface, or their cross-presentation by dendritic cells3. These 
peptides mold the T cell repertoire by inducing negative selection 
of self-reactive specificities4,5 or by promoting positive selection of 
regulatory T cells6. The physiological consequences of Aire’s activity 
are profound, as humans and mice with loss-of-function mutations 
in loci encoding Aire develop multi-organ autoimmunity1.

Even if its structural domains are shared with conventional motif-
specific transcription factors, Aire is a very unusual transcription 
factor. It affects a large number of genes and generally allows the 
transcription of genes that would not be expected to be expressed in 
a given cell-type. Aire contains a SAND domain typically involved 
in DNA binding, but it does not have a distinct DNA-binding motif, 
although it has been suggested to recognize methylated CpG residues 
in association with the methylated CpG–binding factor MBD1 (ref. 7).  
Instead, its transcriptional activity seems to depend on the recogni-
tion of nonspecific markers of chromatin with low activity, such as 
the hypomethylated amino-terminal tail of histone H3 (refs. 8,9) or 
transcriptional start sites (TSSs) with a surfeit of paused polymer-
ases10. Aire also interacts with a variety of non-specific elements of  
the transcriptional and splicing machinery11,12. Indeed, data derived 
from a variety of experimental approaches indicate that Aire’s main 
modus operandi is to release pausing of promoter-proximal RNA 
polymerase II (refs. 10,13,14).

Aire’s action has an element of stochasticity. Single-cell PCR analysis  
suggests that individual mTECs, otherwise indistinguishable, express 
distinct patterns of PTAs15–18. Gene-expression profiling of mTECs 
from individual mice also suggests that inter-individual ‘noise’ in gene 
expression between genetically identical mice is higher for genes that 
are targets of Aire than for the bulk of transcripts19. Despite such 
clues, a coherent framework that explains Aire’s action in individual 
cells has remained elusive.

Single-cell transcriptome sequencing (scRNA-seq) has opened 
completely new vistas on the analysis of gene expression20 by com-
bining the global quality of genome-wide transcriptome profiling 
with the unique granularity brought by single-cell technologies such 
as flow cytometry. It can reveal unrecognized subpopulation struc-
ture and avoid erroneous averaging and can provide information 
on the fluctuations (‘noise’) in gene expression21,22 in an otherwise 
homogeneous population of cells23–25. Some of this noise can result 
from transcriptional bursting26, but it may also reveal coordinated 
activation of specific transcriptional programs that can be impor-
tant in determining cellular differentiation or responses. Technical 
innovations have made scRNA-seq more performant and robust, with 
cell ‘multiplexing’, molecular ‘barcoding’ and microfluidic devices27. 
The analysis of scRNA-seq data remains challenging, however. First, 
with molecular-conversion efficacies of 20% at best, the portion of 
the transcriptome with low expression is unreliably assessed in any 
one cell. Second, because real replicates are innately impossible to 
assess by single-cell analysis, estimation of technical variance remains 
uncertain. Finally, the data must be interpreted in the context of sam-
pling statistics, which makes analysis less intuitive than conventional 
profiling data and necessitates complex statistical models24,25,28.

scRNA-seq seemed to provide a good opportunity to explore the 
distribution of PTA expression in individual mTECs. This perspective,  
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Aire controls gene expression in the thymic 
epithelium with ordered stochasticity
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The transcription factor Aire controls immunological tolerance by inducing the ectopic thymic expression of many tissue-
specific genes, acting broadly by removing stops on the transcriptional machinery. To better understand Aire’s specificity,  
we performed single-cell RNA-seq and DNA-methylation analysis of Aire-sufficient and Aire-deficient medullary epithelial  
cells (mTECs). Each of Aire’s target genes was induced in only a minority of mTECs, independently of DNA-methylation 
patterns, as small inter-chromosomal gene clusters activated in concert in a proportion of mTECs. These microclusters  
differed between individual mice. Thus, our results suggest an organization of the DNA or of the epigenome that results from 
stochastic determinism but is ‘bookmarked’ and stable through mTEC divisions, which ensures more effective presentation of 
self antigens and favors diversity of self-tolerance between individuals.
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much broader than achieved earlier by PCR15,17, allowed us to inves-
tigate how frequently individual genes that are targets of Aire are 
expressed in mTECs and whether Aire changes the frequency of cells 
expressing particular transcripts or instead boosts the intensity of tran-
script expression in cells in which they are already present. Although 
Aire-induced gene expression proved to be very noisy, affecting genes 
with a low frequency of expression, we identified unexpected order 
in this chaos, detecting a large number of Aire-induced transcripts 
whose expression clustered in small groups of mTECs, with no appar-
ent logic, and varied between individual mice. Our observations 
have direct implications for the efficiency of tolerance induction and  
individual susceptibility to autoimmune deviation.

RESULTS
Range of Aire-induced gene expression
As a prelude to single-cell analysis, we performed standard 
RNA-seq analysis of bulk-sorted mTECs. We prepared CD45–

Ly51loMHCIIhiGFPhi cells from mice that express green fluorescent 
protein (GFP) driven on a bacterial artificial chromosome transgene 
encoding Aire29, which we crossed with mice carrying the Aire-knockout  
mutation2 to generate Aire-sufficient (called ‘wild-type’ here) and 
Aire-deficient littermates. In the libraries generated (11.8 × 106 to  
31.3 × 106 mapped reads per sample), we observed a biased and very 
deep effect of Aire: of the 19,772 genes expressed (at a threshold of 
1 FKPM (fragments per kilobase of exon per million mapped reads) 
in these data sets, 2,995 were ‘Aire-induced’ genes and 766 ‘Aire-
repressed’ genes (at an arbitrary change in expression of over twofold) 
(Fig. 1a). These results were consistent with published microarray 
analyses19 and subsequent RNA-seq data30 showing that Aire regu-
lates a large fraction of the transcriptome. The sets of Aire-induced 
genes and ‘Aire-neutral’ genes (neither induced nor repressed by Aire) 
defined here were those tracked in the scRNA-seq analyses below.

In addition to the consequences on entire transcripts reported 
above, our RNA-seq data showed that Aire further exerted more 
subtle effects on the use of individual exons within genes. Several 
transcripts whose overall levels were affected little in mTECs by the 
absence of Aire showed Aire-dependent inclusion of particular exons 

(Fig. 1b). A more complete analysis of this phenomenon revealed 
3,219 such exons with Aire-dependent expression, in contrast to 
the majority of exons whose representation correlated with that of 
the gene as a whole (175,216 exons; Fig. 1c). Alternative splicing 
has long been known to affect tolerance, as initially recognized for 
autoimmune responses to the product of the PTA-encoding gene Plp1  
(refs. 31,32). As has also been speculated before33, Aire may help 
maximize exposure to genome-encoded peptides by enhancing 
exon inclusion, a property consistent with the splicing factors with 
which it interacts11. Conversely, our analysis also revealed the pres-
ence of a set of exons whose abundance remained invariant in the 
presence or absence of Aire, while the whole transcript was induced 
(Fig. 1c). These exons were particularly prevalent at the beginning 
of the transcripts (Fig. 1d), consistent with the demonstration that 
the representation of the first exon shows comparatively little change 
in the absence of Aire10, reflective of polymerases that transcribe a 
short portion of the gene before stalling in Aire’s absence. The match 
between the degree of induction of genes and exons by Aire increased 
progressively along the transcript (Fig. 1d), which suggested that this 
effect might actually extend quite some distance from the TSS.

Overall diversity in transcriptomes of individual mTECs
With the reference data above in hand, we proceeded with analyz-
ing Aire-controlled gene expression in individual mTECs through 
scRNA-seq. We used index sorting of single cells into wells of micro-
titer plates, such that we could relate the RNA-seq profiles to the 
marker characteristics of the cells (Fig. 2a). We generated sequenc-
ing libraries from 360 single mTECs from two pairs of wild-type and  
Aire-deficient mice using a protocol modified from the original CEL-
Seq technique34. This protocol includes oligo(dT) priming with ‘bar-
codes’ to allow attribution of each sequence read to its cell of origin, 
as well as unique molecular identifiers for tagging of each original 
molecule to avoid artifacts from over-amplification of small num-
bers of initial molecules35. Although most single-cell libraries yielded 
high-quality data, for robustness we restricted our further analysis to 
201 cells that generated at least 1 × 104 unique mappable reads per cell 
(Fig. 2b). Several findings confirmed our single-cell data. First, there 
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Figure 1  Aire increases the repertoire and 
diversity of mTEC transcriptome. (a) Read 
counts (as FPKM) versus change in expression 
(wild-type/Aire-deficient (WT/KO)) of all  
genes in RNA-seq libraries generated from 
whole-mTEC RNA of Aire-deficient mice and 
their wild-type littermates, showing genes 
upregulated (red; Aire-induced genes) or 
downregulated (blue; Aire-repressed genes) by 
twofold or more, or with a change in expression 
of less than 1.1-fold (between dashed lines; 
Aire-neutral genes). (b) Read ‘pileups’ (peaks) 
in exons (black boxes, top) in the Aire-neutral 
gene Abcb1b (defined as in a) in wild-type and 
Aire-deficient samples, identifying an Aire-
induced (differentially spliced) exon (yellow).  
(c) Change in expression (as in a) of exons 
versus genes for mTEC RNA-seq data from a, 
showing exons upregulated more than twofold  
at the gene level but less than 1.1-fold at the 
exon level (green) or vice versa (purple).  
(d) Distribution of change in expression (as in 
a) of exons in Aire-induced genes (left) and 
Aire-neutral genes (right), presented according 
to relative position within the gene (key); ‘density’ (vertical axis) indicates the number of genes. Data are representative of two experiments with results 
pooled from two mice per group (a; mean; biological duplicates) or two experiments (b–d).
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was good representation of the transcripts encoding MHC class II and 
housekeeping transcripts expected in mTECs (Fig. 2c). Second, the 
intensity of the Aire-GFP fluorescence, as detected by flow cytometry, 
matched the counts of transcripts encoding GFP and Aire in each cell 
(Fig. 2d; the Aire-deficient mutation abolishes function but not the 
transcript). Third, the total number of reads per gene, obtained by 
aggregation of all the scRNA-seq data sets, recapitulated well the data 
at the population level (Fig. 2e).

We then analyzed computationally the expression of Aire targets in 
these scRNA-seq data. We determined presence or absence of individ-
ual transcripts in each cell (Fig. 3); this revealed each of the following 
points, which we substantiated and confirmed (Figs. 4–6). First, Aire 
targeted mainly transcripts expressed at a low frequency (Aire-induced 
transcripts were more sparse than Aire-neutral transcripts). Second, 
Aire increased that frequency, more in wild-type cells than in Aire-
deficient cells. Third, discrete clusters of Aire-induced genes showed 
coordinated expression. Fourth, in accordance with that point, there 
were groups of mTECs with comparable expression of small gene clus-
ters. Fifth, mTEC clusters were different in individual mice.

Aire targets mainly transcripts expressed at low frequency
We generated density plots of the frequency of mTECs expressing 
individual genes for Aire-induced, Aire-neutral or Aire-repressed 
mRNAs (transcripts matched for expression in bulk RNA-seq). This 
analysis showed that most Aire-induced genes were active in only 
5–20% of the Aire-deficient mTECs sampled (Fig. 4a). Aire-neutral 
and Aire-repressed genes were more frequently expressed in these 
mTECs, and the difference was significant across the three expres-
sion levels (Fig. 4a). Two points indicated that this low frequency of 
Aire-induced transcripts was not merely a consequence of statistical 
sampling, which can be a concern for scRNA-seq. First, the frequency 
of false-negative results (‘dropouts’) from sampling is directly related 
to the intensity of expression, and these dropouts would be expected 
at the same frequency for expression-matched Aire-induced or Aire-
neutral transcripts, which was not the case here (Fig. 4a). Second, we 
plotted the probability that cells with no reads for a given gene were 
statistical dropouts. Most Aire-induced transcripts had a very low 
probability of being a false-negative result (68.1%, with a nominal  
P value of <0.05; Fig. 4b).

Aire increases mainly the intensity of target-gene expression
The higher expression observed in wild-type mTECs than in Aire-
deficient mTECs for a given Aire-induced gene in bulk population 
profiling might have resulted from an increase either in the amount 
of transcript per cell or in the proportion of cells expressing the tran-
script. When we compared the changes in mean expression intensity 
in wild-type mTECs versus Aire-deficient mTECs positive for a given 

transcript, as well as the change in the frequency of cells expressing 
this transcript, we found that Aire expression seemed to increase 
both (Fig. 4c). Curiously, we also observed a limited but significant 
shift between Aire-deficient mTECs and wild-type mTECs for tran-
scripts in the Aire-neutral category (Fig. 4c), which indicated that 
Aire subtly activated the majority of genes in the cell. A potential 
confounder of this analysis is that a higher read number per cell leads 
to more frequent detection of positive cells simply because higher 
intensities favor lower dropout rates. To test for such bias, we plotted 
the frequency of cells expressing Aire-induced or Aire-neutral genes  
versus the mean intensity of expression in mTECs that did express  
those genes, in wild-type and Aire-deficient mTECs. This analysis 
showed that the presence of Aire resulted in a predominant shift in 
the distribution toward higher per-cell intensities, a shift that did not 
merely follow the main intensity-frequency relationship (Fig. 4d). 
Indeed, we found that the shift in expression intensity in Aire’s pres-
ence led to less increase in the expression frequency of its targets than 
predicted from the dropout distribution of gene pairs randomly drawn 
from the Aire-neutral distribution (Supplementary Fig. 1). Thus, 
genes that are targets of Aire remained less frequently expressed than 
the genome-wide norm, even after transcriptional activation by Aire.
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Figure 2  scRNA-seq analysis of mTECs. (a) Sorting of single mTECs (red)  
from wild-type mice for scRNA-seq analysis. (b) Quantification of unique  
mappable reads versus genes detected for each wild-type cell (WT) or  
Aire-deficient cell (KO) in the scRNA-seq data sets; gray (Excluded)  
indicates cells omitted from further analysis. (c) Read ‘pileups’ for  
five illustrative genes (columns) in the scRNA-seq data sets), in  
26 representative cells (rows); only the carboxy-terminal exon is detected 
because the scRNA-seq technique tags only sequences adjacent to  
poly(A). Top, mRNA: blue (sense) or red (antisense). (d) Correlation 
between GFP fluorescence intensity during sorting (as in a) versus GFP  
mRNA reads observed in each cell (Pearson r = 0.56): dot size indicates the 
number of reads from the Aire transcript (wedge). (e) Mean single-cell read 
counts per gene versus bulk read counts of those same genes, in wild-type 
cells (Pearson r = 0.72). Data are pooled from two independent experiments 
with two mice per genotype (a) or two independent experiments (b–e).
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Coordinate expression of discrete clusters 
of Aire-induced genes
The results presented above (short vertical 
streaks, Fig. 3) suggested that subsets of genes were expressed in con-
cert. To better investigate such structures in the data, we calculated 
gene-by-gene correlations for all Aire-induced genes (on the basis of 
a weighted expression matrix24) and performed a partition clustering 
using an affinity-propagation algorithm36. We found a high degree of 

structure in the scRNA-seq data sets from wild-type mTECs, as 51% 
of Aire-induced transcripts grouped into 19 clusters with an internal 
mean correlation of >0.75 (Fig. 5a); these clusters were small (33–114 
transcripts; median, 57) and were largely distinct from each other. We 
verified the significance of these clusters by permutation (randomly 
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Figure 3  Summary of single-cell expression 
results. Presence (black) or absence (white) 
of individual transcripts in wild-type and Aire-
deficient mTECs, for Aire-induced transcripts 
(left) and a set of Aire-neutral genes matched 
for mean expression in transcript-positive cells 
(right) from the scRNA-seq data (Fig. 2): genes 
are arranged in rows by hierarchical clustering; 
cells are arranged in columns according to 
genotype and mouse. The weighted probability 
of expression of each transcript in each cell was 
calculated by a published Bayesian approach28; 
black squares indicate transcript presence 
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no expression (most at high confidence of not 
being dropouts by analysis with the SCDE  
(‘single-cell differential expression’) software 
package, as in Fig. 4). Data are pooled from two 
independent experiments.
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shuffling expression levels per gene between cells), which did not 
reproduce the same degree of cluster structure (Fig. 5b); comparable 
cluster sizes and internal correlations were not achieved in 1,000 ran-
dom permutations (Fig. 5c). We detected fewer such clusters with the 
scRNA-seq data sets from Aire-deficient mTECs (Fig. 5d) or when 
we calculated results from expression-matched Aire-neutral genes 
(P = 8 × 10−5 (Wilcoxon test); Supplementary Fig. 2), which further 
substantiated the significance of these results and indicated that Aire 
was required for the appearance of these co-expressed clusters.

It has been reported that Aire-induced PTA-encoding genes tend 
to partition into local gene clusters37,38. We observed such co-regu-
lated activity of local genomic segments, as illustrated for the Sprr and 
Mup loci (Supplementary Fig. 3). However, these localized co-regula-
tion events contributed little to the overall gene clusters, most of which 
‘rested’ on correlations across chromosomes (Fig. 5e). Therefore, 
mTECs co-expressed networks of discrete, interchromosomal genes. 
We searched for commonalities between the transcripts that would 
form these small clusters. Gene-ontology or pathway analysis (by the 
Molecular Signatures Database or the PANTHER (‘protein analysis 
through evolutionary relationships’) classification system) failed to 
reveal any function or pathway shared by products encoded by genes 
in any of these clusters; nor did cluster members share specificity of 
expression when analyzed across the GNF (Genomics Institute of the 
Novartis Research Foundation) compendium of gene expression39; 

nor did the promoter regions of cluster members show enrichment  
for binding motifs for a particular transcription factor (data not 
shown). Therefore, these co-expressed gene clusters seemed to 
be unrelated in terms of genomic position, biological function or  
transcriptional regulation.

Aire-induced gene networks define distinct mTEC subgroups
Given the small clusters of Aire-induced genes identified above, we 
sought to determine how their expression demarcated individual 
mTECs. Correlation analysis based on probability values for Aire-
induced genes showed that wild-type mTECs partitioned into discrete 
groups (Fig. 6). These groupings were based on inter-chromosomal 
gene networks, because the cell-to-cell correlation maps calculated 
on the basis of transcripts from one chromosome were reproduced, 
for the most part, when calculated with transcripts from other 
chromosomes (Fig. 6a, right). For a broader perspective on mTEC  
heterogeneity in wild-type and Aire-deficient thymi, we analyzed 
the cell-to-cell correlation matrix with t-SNE40, a dimensionality- 
reduction algorithm that computes the probability that two cells 
are similar and displays the best fit in two-dimensional space. Aire- 
deficient mTECs tended to group close together at the center of the 
t-SNE plot (Fig. 6b). Wild-type mTECs, although distributed around 
the same center, radiated further (P < 10–3 (Wilcoxon test)) and were 
more distant from each other (P < 10–60 (Wilcoxon test)) than were 
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(different chromosomes) in the 23 largest clusters of the wild-type scRNA-seq data sets in a. (f) Gene-gene correlations between Aire-induced 
transcripts (identified as in Fig. 1) calculated as in a for all wild-type mTECs (left), and calculated independently in mTECs from each wild-type 
mouse (middle and right). *P = 0.002 and **P = 0.001 (Wilcoxon test). Data are pooled from two independent experiments (a–c,e,f) or are from one 
experiment with 1,000 permutations (d).



©
20

15
N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

�	 aDVANCE ONLINE PUBLICATION  nature immunology

A rt i c l e s

Aire-deficient mTECs (Fig. 6b). Predictably, these small t-SNE groups 
coincided with the cell clusters identified above (Fig. 6a). Thus, Aire 
diversified gene expression, not in a completely random fashion but 
with some degree of coordination between cells.

Difference in mTEC clusters in individual mice
It was already apparent that the small gene clusters expressed in mTECs 
were not shared by different mice (Fig. 3). Indeed, when we calculated 
gene-gene correlations independently from scRNA-seq mTEC data 

sets from each wild-type mouse, correlations within a cluster applied 
for mTECs of only one mouse, but not those of the other mouse  
(Fig. 5f). Thus, these gene networks were most probably established 
by stochastic events and not by ‘hardwired’ molecular cues.

DNA methylation in mTECs does not account for Aire specificity
Epigenetic regulatory mechanisms are likely candidates for two 
prominent characteristics of Aire transcriptional specificity: the ‘pre-
dilection’ to activate infrequently expressed genes, and the interchro-
mosomal clusters that were coordinately expressed in small groups of 
mTECs. The methylation of DNA at CpG dinucleotides is one such 
candidate, as variable but heritable methylation patterns could be at 
the root of this. Indeed, it has been proposed that Aire associates with 
the methylated CpG–binding protein MBD1 and uses this factor’s 
ability to ‘preferentially’ recognize methylation at the TCGCA motif 
for ‘preferential’ targeting of PTA-encoding genes7. In addition, analy-
sis of DNA methylation by reduced representation bisulfite sequenc-
ing (RRBS) is inherently a single-cell methodology that measures the 
frequency of DNA-methylation marks at specific locations and was 
thus a good complement to the single-cell analyses reported above.

To determine their DNA-methylation status, we sorted mTECs as 
described above and processed their DNA for RRBS41. The distribu-
tion of CpG methylation at various positions did not differ markedly 
between mTECs from wild-type mice and those from Aire-defi-
cient mice, for Aire-induced and Aire-neutral loci (Fig. 7a). CpG  
positions in upstream enhancer elements were similarly represented  
in both sets of genes, and the region surrounding the TSS was uniformly  
unmethylated in both cases (Fig. 7a). This observation held for MBD1 
sites in particular, which were uniformly unmethylated in all loci 
(Supplementary Fig. 4). In fact, the frequency of TCGCA sites in 
Aire-target genes was the same in Aire-induced TSSs and Aire-neutral 
TSSs, and reanalysis of published expression data7 showed a limited 
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between individual mTECs (scRNA-seq data of 
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and Aire-deficient mice (bottom) (n = 2 per 
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*P < 10−3 (Wilcoxon test). Data are pooled from 
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in tight nuclear speckles45 thought to be sites of active transcrip-
tion, and it is possible that the set of genes ectopically expressed  
by an mTEC are those that have been ‘threaded’ into these Aire- 
containing speckles.

Clues to the basis of the low expression frequency of Aire- 
controlled genes might be found in the small clusters of co-regulated 
genes whose expression was shared by discrete groups of mTECs. 
The existence of these discrete microclusters of expression is not eas-
ily compatible with a ‘burst’ model, because it is unlikely that genes 
would ‘burst’ at the same time in different cells; instead, the discrete 
microclusters of expression are compatible with a model in which 
infrequent expression results from stable organization of the genome 
or epigenome. Because the genes within these expression clusters did 
not share discernable sequence motifs or chromosomal locations that 
might explain their coordinated transcription, their co-expression in 
a fraction of the mTECs is perhaps most easily interpreted in terms 
of clonal relationship. mTECs that share PTA clusters could plausibly 
be daughters of the same epithelial cell progenitor46, which would 
indicated that the selection of Aire targets within an mTEC clone 
is ‘bookmarked’ across cell division. ‘Bookmarking’ (the recovery 
of gene-expression programs after mitosis47) can be explained for 
conventional transcription by the persistence of networks of specific 
transcription factors, but it is puzzling for a mode of regulation that 
does not depend on the transcription factors that normally activate 
specific PTA-encoding genes15. Epigenetic cues such as DNA modifi-
cations, albeit probably not methylation, or remanent histone marking 
might be involved in ‘bookmarking’ PTA expression. Of note, Brd4, 
which binds acetylated histones and promotes the release of RNA 
polymerase II stalled at the promoter, is involved in trans in mitotic 
bookmarking47 and is an essential Aire cofactor (H. Yoshida et al., 
personal communication); it is possible that Brd4, together with Aire 
and other cofactors, forms trans-mitotically stable complexes with 
fixed DNA regions. Thus, one proposal might be that an inherently 
stochastic mechanism initially selects and marks groups of loci, whose 
co-expression is then bookmarked and transmissible. This scenario 
parallels the stochastically determined repertoire of activating and 
inhibitory receptors in natural killer cells.

In terms of tolerance induction, the low expression frequency of 
Aire-target genes and the existence of expression microclusters would 
indicate that mTECs are ‘splitting the burden’ of PTA expression and 
that there is a higher local concentration of any gene product than 
if all PTAs were uniformly expressed in all mTECs. Since immature 
thymocytes scan the thymic medulla and negative selection is effective 
with small pockets of antigen-positive presenting cells48,49, negative 
selection should be more effective than with lower but widespread 
amounts of PTA expression in mTECs.

Notably, the co-expressed gene clusters were not the same in the 
two genetically identical wild-type mice whose mTECs we analyzed 
by scRNA-seq; this has important implications for the inter-individual 
variation in tolerance within a species. On the basis of microarray 
profiling data, Aire-induced transcripts have shown significantly  
greater inter-individual variability than have Aire-independent tran-
scripts19. Our data have now provided a cellular explanation for this 
observation. One caveat of our study here, however, is that we cannot 
formally know if these co-regulated clusters persist and reflect con-
stant inter-individual differences, or if they fluctuate and represent the 
state of the mTEC pool at the time of cell preparation for scRNA-seq. 
However, since the expressed clusters of Aire-induced genes were not 
shared at the time of the experiment, the two mice analyzed exposed 
their immature thymocytes to slightly different sets of self pep-
tides and thereby generated T cell repertoires with slightly different  

transcriptional effect of MBD1 on mTECs, which overlapped very 
little with Aire’s transcriptional signature (Supplementary Fig. 4c).  
This indicated that MBD1 had little or no role in the Aire-dependent 
expression of PTA-encoding genes.

CpG methylation increases in frequency at intragenic positions42, 
and this trend was slightly less pronounced for Aire-induced loci 
than for expression-matched Aire-neutral loci (Fig. 7a). We sought 
to determine whether the frequency of intragenic CpG methylation 
might relate to the frequency of expression of corresponding Aire-
induced genes in wild-type mTECs. The majority of intragenic CpGs 
were either not methylated or highly methylated, and both of these 
methylation statuses were associated with a range of expression fre-
quencies (Fig. 7b). Finally these methylation profiles, including the 
sites of variable methylation, were not Aire dependent, as shown by 
the high degree of correlation between wild-type mTECs and Aire-
deficient mTECs (Fig. 7c). Therefore, Aire itself did not alter the 
DNA-methylation profiles in mTECs, and methylation patterns did 
not provide any obvious clue as to the frequency distribution of genes 
that are targets of Aire.

DISCUSSION
Our study has revealed several novel aspects of Aire’s function as a 
transcription factor, which probably have direct consequences on its 
function in the induction of central tolerance. First, Aire increased 
the diversity of the mTEC transcriptome by inducing thousands of  
Aire-dependent transcripts, as well as Aire-dependent exons in other
wise Aire-neutral genes. This observation was consistent with the 
prediction that ectopic PTA expression involves splicing patterns 
different from those in the tissues in which PTAs are ‘normally’ 
expressed33. Alternative splicing is known to have important conse-
quences on autoimmune responses31,32, but Aire’s role in this process 
has not been recognized thus far, to our knowledge. It seems likely 
that Aire’s effect on differential exon inclusion is tied to its close 
interactions with splicing factors of the transcriptional machinery 
and its ‘preferential’ effect on spliced transcripts in cultured cells11,14.  
This broad effect on the mTEC transcriptome maximizes the repre-
sentation of peptides presented to developing thymocytes.

Second, Aire seemed to ‘preferentially’ target genes expressed in a 
minority of cells, and increased the intensity of expression of its target 
genes. This is consistent with the notion that Aire recognizes generic 
features of gene and chromatin organization, such as histone H3 with 
no methylation at Lys4 or promoters with a surfeit of paused polymer-
ases8,10,13,43. Thus, Aire had no particular specificity for PTAs but 
instead ‘keyed’ on these general features of poorly expressed genes. 
However, in terms of the regulation of gene expression, what does an 
‘infrequently expressed’ gene really mean, for a rather homogenous 
primary cell population like the Aire+ mTECs analyzed here? It is a 
notion far removed from the deterministic gene-expression programs 
usually envisaged for lineage differentiation but is instead related  
to notions of ‘noisy’ gene expression. There are several sources of 
noise in gene expression that can be important in allowing pro-
gression through differentiation or cellular adaptation processes44.  
Infrequent gene expression can correspond to a ‘burst’ of transcrip-
tion, whereby any given gene is actively transcribed only a small 
fraction of the time26 and produces relatively short-lived tran-
scripts. Then, a low frequency of cells positive for the expression of a  
specific gene can simply indicate the odds of ‘catching’ a cell during 
such a transcriptional burst. Alternatively, low-frequency expression  
can result from a particular organization of the DNA or epige-
netic modifications, which are set stochastically in every cell but  
are then stable for some period of time. Aire is found mainly  
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autoreactivities to peripheral tissues. Such diversity may be favorable 
at the level of the species in ensuring a diversity of potential responses 
to pathogens without uniform ‘holes’ in the repertoire, albeit at the 
price of susceptibility to autoimmune diseases.

Methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. SRA: RNA-seq and methylation data: SRR2038194, 
SRR2038195, SRR2038196, SRR2038197, SRR2038206, SRR2038210, 
SRR2038212 and SRR2038213; GEO: single-cell transcriptomic  
analysis, GSE70798.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Mice. All mice were housed and bred under specific-pathogen–free conditions 
at the Harvard Medical School Center for Animal Resources and Comparative 
Medicine (Institutional Animal Care and Use Committee protocol 2954). Mice 
with Aire-driven expression of Igrp-GFP (sequence encoding GFP fused to the 
gene encoding islet-specific glucose-6-phosphate-related protein; Adig mice)29 
were provided by M. Anderson.

Isolation of thymic epithelial cells. Thymus tissue was dissociated in RPMI 
medium and was digested for 30 min, with agitation every 10 min, with 0.5 mg/ml  
collagenase-dispase (Roche) and 0.2 mg/ml DNase (Sigma) in RPMI medium. 
Following staining with primary antibodies (allophycocyanin-conjugated  
antibody to (anti-) MHC class II (I-A–I-E) (M5/114.15.2), phycoerythrin- 
conjugated anti-Ly51 (6C3) and phycoerythrin– indodicarbocyanine (Cy5)– 
conjugated anti-CD45 (30-F11); all from BioLegend), samples underwent 
were depletion of CD45+ cells by magnetic-activated cell separation with anti-
PE beads (Miltenyi). DAPI–CD45–Ly51loMHCIIhiGFPhi mTECs (5 × 104 to  
10 × 104 per mouse) were sorted on a MoFlo (Cytomation) into Trizol for RNA 
preparation (for TruSeq library preparation) or into RPMI medium (Gibco) for 
RRBS library preparation. For scRNA-seq, similar gating, which also included 
GFPlo mTECs, was used for sorting at a density of one cell per well of a 96-well 
plate on a FACSAria sorter (BD).

TruSeq library preparation and analysis. Bulk RNA-seq libraries were pre-
pared with TruSeq following the manufacturer’s protocol (Illumina) from  
5 × 104 to 10 × 104 sorted mTECs (one mouse) per sample. Sequencing (single-
end, 50bp) was performed on a HiSeq2000 (Illumina), and reads were aligned 
to the mm10 assembly of the mouse genome with the TopHat2 splice-junction 
mapper. Duplicated reads were filtered out from further analysis. Normalized 
counts per transcript (FPKM) were calculated with the Cufflinks suite of  
tools for RNA-Seq analyses. Exon expression was calculated with the  
SeqMonk program for visualization and analysis of mapped sequence data 
(Babraham Institute).

RRBS library preparation and analysis. RRBS libraries were prepared as 
described41 from 5 × 104 to 10 × 104 sorted mTECs (one mouse), except 
that EZ DNA Methylation-Direct (Zymo) was used for bisulfite conversion. 
Sequencing (single-end, 50–base pair (bp)) was performed on a HiSeq2000. 
Prior to alignment, reads were trimmed to remove adaptor sequences with 
the RRBS option of the TrimGalore! automated wrapper script (Babraham 
Institute). Trimmed reads were aligned to mm10 with the Bismark mapping 
tool50 (Babraham Institute), and methylation calls per CpG were calculated 
using SeqMonk (Babraham Institute). Only those CpG sites covered by at least 
20 reads were considered for subsequent analysis. Relating of CpG positions to 
the closest genes was determined by SeqMonk relative to mm10.

scRNA-seq library construction. Single-cell RNA sequencing libraries were 
generated with a modified CEL-Seq protocol34. First, single cells were index-
sorted with a BD FACSAria II in 96-well hard-shell PCR plates (HSP9631; 
BioRad) filled with 4.4 µl of lysis buffer containing 0.125 µl of RNAseOut 
(40 U per 1 µl stock; 10777-019; Invitrogen), 0.25 µl of reverse-transcription  
primer (25 ng per 1 µl stock) and 4 µl of RNAse-free water (AM9932; Ambion). 
Each primer contained a T7 promoter, the 5′ TruSeq Illumina adaptor, 
unique molecular ‘barcodes’ (4–9 bp), a single cell DNA barcode (8–16 bp)  
and oligo(dT) sequence (24 bp). Each of three wells was filled with a different 
mixture to process the carrier RNA and into which single cells were not sorted. 
These wells contained 0.5 µl HeLa total RNA (1 µg/µl; AM7852; Ambion),  
0.25 µl of a T7-oligo(dT) primer without the Illumina adaptor or barcodes (ini-
tially provided in the MessageAmpTM II aRNA Amplification Kit; AM1751; 
Ambion), 0.25 µl of RNAseOut and 3.5 µl of RNAse-free water. After cell 
sorting, the plates were quickly covered with an aluminum seal (AlumaSeal 
96; F96100; Excel Scientific), then were vortexed for 10 s, centrifuged for  
1 min at maximum speed (>2250g at 4 °C), frozen on dry ice and kept at  
−80 °C for up to 3 weeks.

RNA was denaturated by incubation of the plates for 3 min at 70 °C (ther-
mocycler lid temperature, 80 °C) in a thermocycler. 2 µl of First Strand 
Reverse Transcription mix was then added to each well (ArrayScript Reverse 

Transcriptase; AM2048; Ambion) containing 1 µl of dNTP mix (10 mM each 
stock; 18427-013; Invitrogen), 0.5 µl of 10× First Strand Buffer, 0.25 µl of 
ArrayScript (200 U per 1 µl of stock) and 0.25 µl of RNAse Inhibitor (40 U 
per 1 µl stock; AM2682; Ambion). The plates were then incubated for 2 h at 
42 °C (thermocycler lid temperature, 50 °C).

Second-strand reverse transcription was performed with the mRNA 
Second strand synthesis module (E6111L; NEBNext). 15 µl of the Second 
Strand Reverse Transcription containing 12 µl of RNAse-free water, 2 µl of 
10× Second Strand Synthesis Reaction Buffer and 1 µl of the Second Strand 
Synthesis Enzyme Mix was added to each well of the plates. The plates were 
then incubated for 2.5 h at 16 °C (with thermocycler lid open). cDNA clean-up 
and size selection were then performed using the Agencourt RNAClean XP 
beads (A63987; Beckman Coulter). First, single-cell cDNA libraries containing 
different barcodes were pooled into one tube with a Hela carrier cDNA library. 
In our experiments, 30 single-cell cDNA libraries were pooled together with a 
carrier HeLa cDNA library (three pools per plate). Each pool was mixed with 
0.8× volume of Agencourt RNAClean XP beads, followed by incubation for 
15 min at room temperature, then incubation for 5 min on the magnet. The 
supernatant was carefully removed and the beads were washed with fresh 70% 
ethanol twice while still on the magnet. Beads were dried for 15 min before 
elution was carried out in 50 µl of RNAse-free water. A second bead purifica-
tion was performed similarly with 1× volume of RNA AMPure XP Beads and 
with elution in 6 µl of RNase-free water.

In vitro transcription was then conducted with a MEGAshortscript T7 tran-
scription kit (AM1354; Ambion). 10.4 µl of a mix containing 1.6 µl of ATP  
(75 mM stock), 1.6 µl of UTP (75 mM stock), 1.6 µl of GTP (75 mM stock),  
1.6 µl of CTP (75 mM stock), 1.6 µl of T7 10× Reaction Buffer, 1.6 µl of T7 
Enzyme Mix and 0.8 µl of RNAseOut was added to each 6-µl cDNA pool, 
followed by incubation for 14 h at 37 °C (thermocycler lid temperature,  
70 °C). Illumina libraries were then constructed as follows. First, the amplified  
RNA (aRNA) was fragmented with the Magnesium RNA Fragmentation  
Module (NEBNext E6150S). 4 µl of the fragmentation mix, containing  
2 µl of RNAse-free water and 2 µl of the RNA Fragmentation Buffer (10×),  
was added to 16 µl of aRNA. Samples were immediately incubated for 2 min 
at 94 °C (thermocycler lid temperature, 105 °C), then were immediately 
transferred onto ice, and the reaction was stopped by the rapid addition  
of 2 µl of 10× RNA Fragmentation Stop Solution. The fragmented aRNA was 
then cleaned with an RNeasy MinElute Cleanup Kit (74204; Qiagen) accord-
ing to the manufacturer’s protocol, followed by elution, twice, in 10 µl of  
RNAse-free water.

The size distribution and quantity of fragmented aRNA was then assessed 
by analysis of 1 µl of each sample in a BioAnalyzer with an Agilent RNA 6000 
pico Kit (5067-1513; Agilent). The samples were then treated as follows. First, 
the 5′ end of the aRNA was dephosphorylated by the addition of 4 µl of a mix 
containing 2 µl of 10× Antarctic Phosphatase Reaction Buffer, 1 µl of Antartic 
phosphatase (5U per 1 µl stock; M0289; NEB) and 1 µl of RNAseOut to 16 µl 
of each aRNA pool, followed incubation for 30 min at 37 °C and for 5 min at 
65 °C. Then, the RNA was dephosphorylated at the 3′ end and phosphorylated 
at the 5′ end by the addition of 30 µl of a mixture containing 21.5 µl of RNAse-
free water, 5 µl of 10× Antarctic Phosphatase Reaction Buffer (M0289; NEB), 
0.5 µl of ATP (100 mM stock, ATP Tris buffered; R1441; Thermo Scientific), 
1 µl of RNAseOut and 2 µl of T4 PolyNucleotide Kinase (10 U/µl; M0201S; 
NEB), followed by incubation for 1 h at 37 °C. RNA treated with phosphatase 
and T4 polynucleotide kinase was then purified with an RNeasy MinElute 
Cleanup Kit according to the manufacturer’s protocol (Qiagen) and was eluted 
in 14 µl of RNAse-free water. The samples were then dried down to a volume of 
5 µl with a vacuum concentrator (5–7 min at 55 °C). The 3′ Illumina adaptor 
(RA3) was then ligated to the treated RNA with T4 RNA Ligase 2, truncated 
(L6070L; Enzymatics). 3 µl of a mixture containing 1 µl of 10× truncated T4 
RNA Ligase 2 buffer, 1 µl of DMSO (D9170; Sigma) and 1 µl of the 3′ adaptor  
(10 µM stock) was added to 5 µl of the treated RNA. The samples were  
incubated for 2 min at 70 °C (thermocycler lid temperature, 80 °C), then 
were placed immediately in ice, and 2 µl of a mixture containing 0.5 µl of 
RNAse Inhibitor (40 U/µl; Y9240L; Enzymatics) and 1.5 µl of truncated T4 
RNA Ligase 2 (5 U per 1 µl of stock) was added. The ligation was performed 
for 1 h at 22 °C (open thermocycler lid). The ligated RNA was then reverse-
transcribed with SuperScript II (18064-014; Invitrogen). 8.5 µl of a mixture 



©
20

15
N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

nature immunology doi:10.1038/ni.3247

containing 2 µl of RNA reverse-transcription primer (RTP primer; Illumina); 
10 µM stock) and 6.5 µl of RNAse-free water was added to 10 µl of the ligated 
RNA. The samples were then incubated for 2 min at 70 °C (thermocycler lid 
temperature, 80 °C) and then placed immediately on ice, and 10.5 µl of a mix-
ture containing 4 µl of 5× First Strand Buffer, 0.5 µl of dNTP (25 mM mix), 2 µl  
of DTT (100 mM stock), 2 µl of RNAseOut and 2 µl of SuperScript II (200 U 
per 1 µl of stock) was added.

Reverse transcription was performed for 1 h at 50 °C (thermocycler lid 
temperature, 70 °C), and the library was then amplified with Kapa HotStart 
ReadyMix (KK2602; Kapa). 71 µl of the following mixture was added to 
each reverse-transcription reaction: 17 µl RNAse-free water, 50 µl of Kapa 
2× HotStart ReadyMix and 4 µl of P5_Rd1_Primer_F (10 µM stock).  
To each reaction 4 µl of a uniquely indexed P7_Rd2_Primer_idxN_R (10 µM 
stock) was added, and PCR cycles were performed as follows: 95 °C for 3 min;  
18 cycles of 20 s at 98 °C, 30 s at 60 °C and 30 s at 72 °C; and 5 min at 72 °C. 
The PCR product was then cleaned up and selected by size with two rounds of 
treatment with Agencourt AMPure XP Beads (A63880), as described above, 
with the following modifications. The first purification used 1× volume of 
beads and elution was performed in 32 µl of water; the second purification 
used 1.2× volume and 12 µl of elution water.

The size distribution and quantity of the library was assessed by analysis 
of 1 µl of each sample in a BioAnalyzer with a Agilent High Sensitivity DNA 
Kit (5067-4626; Agilent). Samples were pooled for sequencing on a MiSeq 
(‘nano kits’) and HiSeq 2500 (rapid mode). Paired-end 50-bp sequencing was 
performed with custom primers (100 µM stock in water) as follows: 75 bp for 
Read 1 (custom_Read_1_seq), 7 bp for index sequencing (custom_i7_seq), 
and 25 bp for Read 2 (custom_Read_2_seq). Read 1 reads through the tran-
script sequence. Read 2 reads through the single-cell barcode and unique  
molecular identifiers.

scRNA-seq data processing. Raw data were processed with custom scripts. 
Raw reads were first trimmed with the FASTX toolkit, version 0.0.13 (fastx_
trimmer –Q 33). Read 2 was trimmed for extraction of the single-cell barcode 
(8 bp) and the unique molecular identifiers (4–8 bp), and Read 1 was trimmed 
to 30 bp get rid of a potential oligo(dT) sequence. After merging of the dif-
ferent parts (barcode, unique molecular identifiers and transcript sequence), 
reads were filtered for quality (more than 80% of the sequence had a Sanger 
Phred+33 quality score of >33) with the command fastq_quality_filter -v -Q 
33 -q 20 -p 80. Then the reads were assigned to each single cell through use of 
the 8-bp barcode and the fastx_barcode_splitter.pl tool script for a maximum 
of two mismatches. Reads assigned to each single cell were then trimmed again 
to retrieve the transcript sequence with the command fastx_trimmer.

Mapping was performed using TopHat2 to the mm10 mouse transcrip-
tome and strand information was kept with the following options: tophat -p 
2–library-type fr-firststrand–read-mismatches 5–read-gap-length 5–read-
edit-dist 5–no-coverage-search–segment-length 15–transcriptome-index. 
Duplicated mapping reads were filtered out with the unique molecular  
barcodes as follows. First, duplicated mapped reads were marked via the com-
mand picard-tools-1.79/MarkDuplicates.jar. Then, the genomic position of the 
duplicated reads were extracted, and for each of these positions, only reads 
with unique molecular identifiers were then kept. Reads that mapped to mul-
tiple positions were filtered out via the parameter flag 256 of the SAMTools 
format (sequence alignment map) for storing large nucleotide sequence align-
ments and utilities for manipulating alignments. Finally, reads were assigned to 
genes through the use of htseq-count software and the biomart_mm10_gene.
gff reference transcriptome with the following options: -s yes -m intersection-
nonempty. The script was modified to assign reads that overlapped in several 
genes to the one closest to a 3′ end.

Counts were normalized between cells by quantile normalization using 
the normalize.quantiles function in preprocessCore collection of pre-
processing functions (in software of the R project for statistical computing) 
to account for differences between cells in read depths. However, inherent 
sampling biases can occur during analysis of single-cell RNA-seq data that 
can cause some transcripts, particularly those with low expression, to remain 
undetected. These undetected events are known as ‘dropouts.’ Therefore, to 
account for these sampling biases, we calculated probability that a given tran-
script was unsampled (versus genuinely unexpressed) with the scde.failure. 

probability function of the SCDE (‘single-cell differential expression’)  
package28. ‘Confidence probabilities’ were calculated as 1 − SCDE dropout 
probability. An event with a confidence P value of less than 0.05 was considered 
a genuinely unexpressed event. Conversely, events with confidence values of 
greater than 0.95 were considered significantly confident.

To determine how frequently individual genes were expressed in the mTEC 
population, we calculated frequency of expression per gene as the number 
of mTECs expressing a given gene (specifically, if >0 reads were detected for 
a given transcript in a given cell) divided by the total number of mTECs; 
wild-type and Aire Aire-deficient frequencies were calculated independently. 
Similarly, we calculated mean counts from expressing cells to determine the 
transcriptional output of individual genes when that gene is expressed; there-
fore, we simply averaged nonzero counts per gene for wild-type mTECs and 
Aire-deficient mTECs, separately.

Gene-set definitions. Aire-induced and Aire-neutral gene lists used in many 
of our analyses were defined above (Fig. 1). Specifically, Aire-induced genes 
were those whose expression was at least twofold higher in wild-type mTECs 
than in Aire-deficient mTECs, at the population level. Aire-neutral genes 
were defined as those whose expression did not differ more than 1.1-fold in  
wild-type mTECS versus Aire-deficient mTECs.

To control for unrelated effects that could result simply from different levels 
of transcriptional output from different loci, we used expression-matched gene 
sets defined by scRNA-seq data in many of our analyses. For this, we selected 
genes in the expression windows for second-highest maximum read counts 
(that is, the number of counts per gene that was the second highest among 
all cells in that group) among our single-cell data. We specifically did not use 
maximum read counts to avoid confounding, outlier events.

Simulation of intensity-frequency joined distributions. We aimed at testing 
the change, between Aire-deficient mTECs and wild-type mTECs, in gene-
expression frequency versus the change in mean expression for Aire-induced 
genes. To take into account the higher dropout probability observed for low 
expressed genes, we derived a null distribution for Aire-neutral genes of the 
changes in frequency that might result from changes in mean intensity in 
positive cells for Aire-induced gene: For each Aire-induced gene (‘Gi’), we 
randomly sampled 50 random Aire-neutral genes expressed at the same level 
as Gi in Aire-deficient cells, and another 50 genes expressed at the same level 
as Gi in wild-type mTECs. We then calculated the average change in frequency 
for these 50 random pairs, and plotted it against their mean difference in 
expression (Supplementary Fig. 1).

Correlation and clustering analyses. We used a row-standardized expression 
matrix weighted by the confidence of expression (1 − dropout) as in published 
studies24. Specifically, expression levels per gene were standardized among all 
cells using the scale function in R. For zero-read events in the raw count data, 
the standardized expression value was multiplied by the expression confidence 
value (1 − dropout) to correct for dropout biases.

Gene-gene and cell-cell Pearson correlations were performed with the ‘cor’ 
function in R. To identify co-expressed gene networks and highly similar cell 
subsets, we clustered our expression data by affinity propagation based on 
Pearson correlations with the ‘corSimMat’ function in the apcluster package36). 
Affinity propagation was useful in this case, as it does not require a known 
number of clusters a priori.

To test the validity of the gene clusters observed in the wild-type data set, we 
shuffled our real data by randomly redistributing read counts per gene among 
wild-type cells with the sample function in R per row of the data matrix. We 
shuffled the data and ran apcluster with the wild-type data for 1,000 permuta-
tions, storing cluster size and mean correlation per cluster for all permutations, 
with a custom script.

For cell clusters, affinity propagation with apcluster was used to determine 
cell groups on the basis of the expression of Aire-induced genes located on 
chromosome 1. To determine whether the same cell groups were still highly 
similar on the basis of the expression of Aire-induced genes from other chro-
mosomes, we maintained the same order determined by our initial analysis 
using genes on chromosome 1 and calculated cell-cell Pearson correlations on 
the basis of Aire-induced genes from chromosomes 2 and 7.
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We used t-SNE computation to visualize the cell-cell heterogeneity  
we observed in our wild-type and Aire-deficient mTECs as a simple two-
dimensional representation. We calculated t-SNE components on the basis 
of Pearson correlations of Aire-induced gene confidence probabilities with 
the t-SNE package40.

Gene cluster chromosomal distances. To determine what genomic distances 
the components of the gene clusters spanned, we matched each gene per cluster 

with its most highly correlated partner (using the ‘cor’ function in R). On the 
basis of the TSS positions of the genes, each gene was designated as inter-
chromosomal (located on different chromosomes), intrachromosomal (same 
chromosome, but >1 Mb away), or local (same chromosome and <1 Mb away) 
on the basis of the distance to that gene’s most highly correlated partner.

50.	Krueger, F. & Andrews, S.R. Bismark: a flexible aligner and methylation caller for 
Bisulfite-Seq applications. Bioinformatics 27, 1571–1572 (2011).
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