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mechanism more directly, we simulated maize
yields using the Agricultural Production Systems
Simulator (APSIM) model for a representative
site under sowing densities of 24,000 and 35,000
plants per acre, or 6.0 and 7.5 plants per m2, re-
spectively. Simulations under higher density exhib-
ited higher average yields, but significantly higher
sensitivity to VPD than simulations for lower den-
sity (fig. S11). The estimated yield response to
high VPD 61 to 90 days after sowing in the simu-
lations (–15% and –28% per kPa, respectively)
agreed with the cross-sectional analysis of the
USDA data (Fig. 4A). The importance of density
is also suggested by the fact that soybeans, which
show weaker evidence of increased drought sen-
sitivity, have exhibited relatively constant sowing
densities since 1995 in this region (24, 25).

Our results agree with the general notion that
as farmers become more adept at removing all
nonwater constraints to crop production, the sen-
sitivity to drought generally increases (26). Given
the dominant role of temperature (via VPD) in
driving water stress in this region, our results are
also consistent with the finding that heat sensi-
tivity of maize yields in Indiana increased in re-
cent decades (27). One implication is that climate
change effectsmay bemore severe than predicted
by models that assume current crop genetics and
management. Climate model projections indicate
that July VPD for this region will become more
severe, with an expected increase in average VPD
of roughly 20% over the next 50 years (Fig. 4B),
driven both by higher temperatures and reduced
relative humidity. At current VPD sensitivity, these
VPD trends would reduce yields by about 15%
over the next 50 years. If maize yields continue to
become increasingly sensitive to VPD, then yield
losses fromVPD trends could be asmuch as 30%
(Fig. 4C).

Overall, we find no evidence to support the
notion that farmers’ yields are becoming less sen-
sitive to drought in the main maize- and soybean-
growing states. Instead, we find evidence that
drought sensitivity in maize, in particular sensi-
tivity to high VPD, has steadily increased over the
past 18 years. Whether the recent push by seed
companies to develop andmarket drought-tolerant
seeds will reverse this trend remains to be seen. It
is clear that cultivar changes are not the only
relevant factor for changes in drought sensitivity,
because agronomic trends—often facilitated by the
cultivar changes—can be as or more important. It
is also clear that new, field-level data sets on farm
performance can complement field-based experi-
ments in efforts to understand changes in drought
sensitivity in this important production region.
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Polarization of the Effects of
Autoimmune and Neurodegenerative
Risk Alleles in Leukocytes
Towfique Raj,1,2,3,4 Katie Rothamel,5 Sara Mostafavi,6 Chun Ye,4 Mark N. Lee,3,4
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Scott Davis,5 Cristin McCabe,1,4 Hyun-il Paik,5 Gyan P. Srivastava,1,2,3,4 Soumya Raychaudhuri,2,3,4,9
David A. Hafler,4,10 Daphne Koller,6 Aviv Regev,4,11 Nir Hacohen,4,12 Diane Mathis,5
Christophe Benoist,5* Barbara E. Stranger,13,14* Philip L. De Jager1,2,3,4*

To extend our understanding of the genetic basis of human immune function and dysfunction,
we performed an expression quantitative trait locus (eQTL) study of purified CD4+ T cells and
monocytes, representing adaptive and innate immunity, in a multi-ethnic cohort of 461 healthy
individuals. Context-specific cis- and trans-eQTLs were identified, and cross-population mapping
allowed, in some cases, putative functional assignment of candidate causal regulatory variants
for disease-associated loci. We note an over-representation of T cell–specific eQTLs among
susceptibility alleles for autoimmune diseases and of monocyte-specific eQTLs among Alzheimer’s
and Parkinson’s disease variants. This polarization implicates specific immune cell types in
these diseases and points to the need to identify the cell-autonomous effects of disease
susceptibility variants.

It is necessary to understand the functional
consequences of disease-associated genetic var-
iation as we strive to unravel the causal chain

of events linking genetic risk factors to clinical
syndromes. Becausemost disease-associated var-
iants localize to noncoding regions of the genome,

an initial role of their function can be inferred from
their proximity to a gene and association to gene
expression levels (1–6) or to epigenomic features
derived from representative tissues and cell types
(7, 8). Given the central role of inflammation in
many diseases, we leveraged differences in the
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genetic structure of human populations to sys-
tematically interrogate the role of peripheral blood
cell types that represent the lymphoid (CD4+ T
lymphocyte) and myeloid (CD14+CD16– mono-
cyte) arms of the immune system. These distinct
programs of gene expression were profiled as part
of the of Immune Variation (ImmVar) Project.

We used a rigorous sampling and cell puri-
fication protocol, minimizing circadian and ex-
perimental noise, to generate gene expression
profiles from blood cells of 461 healthy individ-
uals sampled in Boston, Massachusetts, including
African Americans (AA), European Americans
(EU), and East Asian Americans (EA) (Table 1,
fig. S1, and table S1) (see also supplementary
materials and methods). We purified naïve CD4+

CD62Lhi Tcells, chosen tominimize experiential or
environment-linked variation in effector/memory
pools. Similarly, CD14+CD16– monocytes are a
recent and short-lived cell population that is less
likely to reflect an individual’s life history. We
quantified the extent of differential gene expres-
sion between each pairwise combination of pop-
ulations using the VST statistic for each of the
19,114 genes passing quality control (fig. S2). VST
(range: 0 to 1) is similar to the fixation index (FST):
It quantifies the proportion of expression-level
variance explained by population-level differ-
ences (1). The low median pairwise VST estimates
(ranging from 0.005 to 0.009) suggest minimal
gene expression variance between populations.
Nonetheless, several genes are highly differ-
entiated (VST > 0.2; top 1% of all VST scores) in
expression between pairs of human populations
(Fig. 1, A and B, and tables S2 and S3).

For each human population and cell type, we
associated residual RNA expression phenotypes
with genotyped or imputed (using reference haplo-
types from The 1000 Genomes Project) (9) SNPs
in a T1-Mb window around the transcription start
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chiatry, Brigham and Women’s Hospital, Boston, MA 02115,
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Medical School, Boston, MA 02115, USA. 4The Broad Institute
of MIT and Harvard, Cambridge, MA 02142, USA. 5Department
of Microbiology and Immunobiology, Division of Immunol-
ogy, Harvard Medical School, Boston, MA 02115, USA. 6De-
partment of Computer Science, Stanford University, Stanford,
CA 94305, USA. 7Department of Human Genetics and Disease
Diversity, Graduate School of Medical and Dental Sciences,
Tokyo Medical and Dental University, Tokyo, Japan. 8Labo-
ratory for Statistical Analysis, RIKEN Center for Integrative
Medical Sciences, Yokohama, Japan. 9Division of Rheuma-
tology, Immunology and Allergy, Department of Medicine,
Brigham and Women’s Hospital, Boston, MA 02115, USA.
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*Corresponding author. E-mail: christophe_benoist@hms.
harvard.edu (C.B.); bstranger@medicine.bsd.uchicago.edu
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Table 1. Significant cis-eQTLs detected at FDR = 0.05. N/A, not applicable.

Population
Monocyte CD4+ T cell Shared

No. of
participants

No. of
genes

No. of
participants

No. of
genes

No. of
genes

European American 211 3090 213 2352 1178
African American 112 1318 112 722 259
East Asian 78 1181 82 592 215
≥Two populations N/A 1352 N/A 739 328
Three populations 401 537 407 255 102
Nonredundant 401 3703 407 2672 1372
Meta-analysis 401 6210 407 4975 2789

Fig. 1. Transcriptome variation among human populations. Heat map of genes that are
differentially expressed (VST > 0.2) in monocytes (A) and T cells (B). (C) Example of a cis-eQTL shared
across populations. (D) Examples of population-specific cis-eQTLs. (E) Regional association plots of an
EU-specific cis-eQTL in the TARSL2 locus.

2 MAY 2014 VOL 344 SCIENCE www.sciencemag.org520

REPORTS



site of each gene. Of the 19,114 genes tested in T
cells, we detected 2352, 592, and 722 genes with
evidence of a cis expression quantitative trait
locus (eQTL) effect in EU,EA, andAAparticipants,
respectively [false discovery rate (FDR) = 0.05]
(Table 1 and tables S4 to S6). In monocytes, we
detected more genes with cis-eQTLs: 3090, 1181,

and 1318 in EU, EA, and AA participants, re-
spectively (Table 1 and tables S7 to S9). Up to
70% of the genes with cis-eQTLs in monocytes
replicate associations noted in a previous study
(4) (fig. S3).

We used a Bayesian model average (BMA)
and a hierarchical model (HM) (10) to jointly

analyze the three human populations in a single
framework. This method was applied separately
to each cell type. With BMA-HM, we observed a
high degree of cross-population sharing, with 96%
[95% confidence interval (CI): 89 to 100%] and
94% (95% CI: 83 to 100%) of cis-eQTLs being
shared by all three populations in monocytes

P

P

Fig. 2. Comparison of meta-analysis results from each cell type.
(A) Manhattan plots of the most significant cis-eQTL per gene in monocytes (top)
and T cells (bottom). The highlighted genes are representative of genes that (i) are
shared, (ii) are cell-specific, or (iii) overlap with a disease association. (B) Inference
of the proportion of cis-eQTL sharing between the two cell types using a Bayesian

hierarchical model. (C) Expression-level fold-change for the most significant cis-
eQTLs in T cells and monocytes. (D) Spearman’s r (direction of allelic effect on
gene expression) for the most significant cis-eQTLs shared by the two cell types.
We highlight genes that have discrepant directions of effect. (E) Example of a
context-specific cis-eQTL in a rheumatoid arthritis locus. Mbp, megabase pairs.
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and T cells, respectively (Fig. 1C). A small num-
ber of population-specific cis-eQTLs were found
(Fig. 1, D and E). Using a different approach, a
measure of the proportion of overlap estimated
from the enrichment of low P values (p1) (11),

we observe a similarly high degree of pairwise
population sharing of cis-eQTLs (70 to 90%)
(table S10).

The direction of allelic effect [that is, whether
a given cis-eQTL is associated with an allele in

the same (or opposite) direction across pairs of
populations] is highly conserved: When the top
single-nucleotide polymorphism (SNP)–gene pair
is shared across pairs of populations, all cis-eQTLs
are concordant, suggesting that causal regulatory
variation generally affects gene expression in the
same direction in all populations (figs. S4 and
S5). Similarly, the effect size of shared cis-eQTLs
is significantly correlated (Pearson’s r = 0.70 to
0.87) in each pairwise combination of popula-
tions for the same cell type (figs. S6 and S7),
suggesting little population-specific modulation of
eQTL effect.

A meta-analysis maximized our power to
detect cis-eQTLs in 401 participants with mono-
cyte data and 407 with T cell data; we used a
random effects model optimized to detect asso-
ciations under heterogeneity (12). We detected
50% more genes with cis-eQTLs in the meta-
analysis: 6210 genes in monocytes and 4975
genes in Tcells (Fig. 2A and tables S11 and S12).
Up to 17% of genes in monocytes and 14% of
genes in T cells demonstrate multiple inde-
pendent eQTL effects (figs. S8 and S9). In addi-
tion, among the genes with shared effects across
populations, the number of candidate causal var-
iants in strong linkage disequilibrium (LD) with
the lead SNP was reduced by more than 50% to
an average of 21.2 SNPs when an LD threshold
of r2 > 0.8 with the lead SNP is considered in the
meta-analysis (fig. S10).

To identify trans-eQTLs in which a SNP is as-
sociated with expression of a distal gene (>1 Mb
from the SNP or on a different chromosome), we
performed a trans-eQTLmeta-analysis in our data.
At a conservative Bonferroni-corrected threshold
of P < 3 × 10−12, we identified 482 trans-eQTL
associations (427 are interchromosomal) involv-
ing 55 genes specific to monocytes, 31 genes
specific to Tcells, and 4 genes shared by both cell
types (figs. S11 and S12 and tables S13 and S14).
Our results support the existence of trans-eQTLs,
but their mechanism remains largely unknown.

We assessed the proportion of cell type–specific
cis-eQTLs with BMA-HM (10) and estimated
that 29% of cis-eQTLs are specific to monocytes,
whereas 8% are specific to T cells, with 63%
shared across cell types (Fig. 2B). Using a dif-
ferent approach that estimates the likelihood of
eQTL rediscovery (11), we obtain similar esti-
mates of sharing: p1 = 69, 68, and 62% in the EU,
AA, and EA participants (table S15). With refer-
ence epigenomic data from the ENCODE project
(13), the cell type–specific cis-eQTLs were rela-
tively enriched (quantified by relative risk) in the
histone marks and deoxyribonuclease (DNase) I
sites derived from the pertinent cell type (fig. S13).
For instance, Tcell–specific cis-eQTLs were more
likely to coincide with DNase I sites derived from
naïve CD4+ T cells than from monocytes. This
confluence of epigenomic annotations and func-
tional analysis results strengthens the interpreta-
tion of such epigenomic annotations, which are
inferred to relate to functional effects of given
variants.

P

P

Fig. 3. Polarization of cis-regulatory effects for disease-associated variants. (A) (Left) For each
evaluated trait, we report, in parentheses, the number of trait-associated (GWAS) SNPs with cis-eQTL effects
over the total number of SNPs, and the number of genes influenced by one or more of these SNPs. For each
trait, we present the distribution of the proportion of cell specificity (estimated using a Bayesian hierarchical
model) observed for each of 1000 random samplings of matched SNP sets. The proportion of cell-specific
cis-eQTL effects observed for a given trait is shown over this distribution using an orange line for monocytes
and a green line for T cells. (Right) We report the proportion of cis-eQTLs that are monocyte-specific
(orange), shared (blue), and T cell–specific (green). (B) Four diseases with significant polarization (FDR <
0.05) in the distribution of cis-eQTLs: Multiple sclerosis and rheumatoid arthritis are enriched in T cell effects
(green), whereas Alzheimer’s and Parkinson’s diseases are enriched in monocyte effects (orange).
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We went on to examine whether cis-eQTLs
shared across cell types have similar direction and
effect sizes. The comparison of the effect size for
an eQTL (most significant SNP per gene) in the
two cell types (Fig. 2C) showed concordance in
effect size for most eQTLs (Pearson’s r = 0.79).
However, in 42 genes, the most significant SNP
was associated with discordant directional effects
across cell types: The allele associated with high-
er expression in one cell type is associated with
lower expression in the other (Fig. 2D and fig.
S14).We identified another dimension of cell type
specificity: 6% of genes with cis-eQTLs shared
across cell types are influenced by different,
independent SNPs in each of the two cell types.
Furthermore, 7% of independent SNPs in T cells
and 11% in monocytes were associated with ex-
pression levels of more than one gene, with several
SNPs affecting different genes in a cell type–
dependent manner (Fig. 2E).

Leveraging 6341SNPs (LD-pruned to r2 < 0.4)
associated with one or more of 415 human dis-
eases or traits [National Institutes of Health
genome-wide association study (GWAS) cata-
log] (14), we note 887 independent SNPs that
influence expression of 1088 genes in cis (tables
S16 and S17). To distinguish coincidental co-
localizations of GWAS and eQTL associations,
we used regulatory trait concordance (RTC) scores
(15), which assesses whether a cis-eQTL and a
trait association are tagging the same functional
variant. Applying a stringent RTC threshold of
0.9, we identified 106 GWAS SNPs in T cells
for which the trait and expression associations
may be tagging the same effect; in monocytes,
123 GWAS SNPs met this criterion. Given the
cell types profiled in our study, we found the
expected significant enrichment (permutation
P < 1 × 10–4) for cis-eQTLs among autoimmune
disease–associated variants: Of the 425 GWAS
SNPs associated with one or more autoimmune
disease, 143 have cis-regulatory effects on 164
genes in monocytes and/or T cells (fig. S15 and
tables S18 and S19).

Disease and trait-associated cis-eQTLs show
more cell type specificity than average cis-eQTLs.
Using BMA-HM, we find that 46% of all trait-
associated variants are monocyte-specific, 29%
are Tcell–specific, and 25% are shared (Fig. 3A).
In addition, variants associated with some dis-
eases display a preponderance of T cell–specific
cis-regulatory effects: These include susceptibil-
ity alleles for multiple sclerosis, rheumatoid ar-
thritis, and type 1 diabetes (Fig. 3, A and B). On
the other hand, Alzheimer’s disease (AD), Par-
kinson’s disease (PD), lipid traits, and type 2
diabetes susceptibility alleles are enriched in
monocyte-specific effects (Fig. 3, A and B). In
fact, the AD susceptibility alleles are significant
eQTLs only in monocytes (Fig. 3B and figs. S16
and S17). Because the targeted genes are most-
ly expressed in both monocytes and T cells, this
observed polarization is not driven by the lack
of expression of the implicated genes in T cells
(fig. S18).

On the basis of these results, we suggest that
the inflammatory component of susceptibility to
neurodegenerative diseases may be more strong-
ly driven by the myeloid compartment of the im-
mune system. This is consistent with the altered
phagocytic function that we have reported in
monocytes of individuals carrying the CD33AD
susceptibility variant (16). The putative role of in-
flammation has previously been invoked in aging-
related neurodegenerative diseases such as AD
and PD (17), but our results bring a genetic un-
derpinning and candidate pathways to these ob-
servations. Because our study examines young and
healthy individuals, we provide support for a role
of myeloid cells in the prodromal phase of neu-
rodegenerative diseases. Functionally, we cannot
say that blood-derived monocytes themselves are
the key cell type; they are likely to be proxies for
the infiltrating macrophages (which differentiate
frommonocytes) and/or resident microglia found
at the sites of neuropathology. Both of these cell
types share many of the transcriptome patterns of
monocytes.

Despite its inherent logistic challenges, the
profiling of purified primary cells from multiple
human populations was clearly beneficial in sev-
eral respects, including the reduction of the cred-
ible set of variants associated with a given trait.
Though the majority of eQTLs are shared, the
ImmVar study provides clear examples of context
specificity of eQTLs and has yielded insights into
the relative role of two representative cell types in
exerting the functional consequences of disease-
associated variants. Further, the depletion of disease-
associated eQTLs with effects in both cell types
is intriguing and suggests that the evolutionary
history of cell-specific and pleiotropic variants is
an important area of future investigation. Overall,
this component of the ImmVar Project represents

a strong foundation for future explorations of the
role of disease susceptibility variants in an increas-
ingly diverse matrix of cell types, stimuli, and
in vivo contexts.
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Reconstructing the DNA Methylation
Maps of theNeandertal and theDenisovan
David Gokhman,1 Eitan Lavi,1 Kay Prüfer,2 Mario F. Fraga,3 José A. Riancho,4 Janet Kelso,2
Svante Pääbo,2 Eran Meshorer,1,5* Liran Carmel1*

Ancient DNA sequencing has recently provided high-coverage archaic human genomes.
However, the evolution of epigenetic regulation along the human lineage remains largely
unexplored. We reconstructed the full DNA methylation maps of the Neandertal and the
Denisovan by harnessing the natural degradation processes of methylated and unmethylated
cytosines. Comparing these ancient methylation maps to those of present-day humans, we
identified ~2000 differentially methylated regions (DMRs). Particularly, we found substantial
methylation changes in the HOXD cluster that may explain anatomical differences between archaic
and present-day humans. Additionally, we found that DMRs are significantly more likely to be
associated with diseases. This study provides insight into the epigenetic landscape of our closest
evolutionary relatives and opens a window to explore the epigenomes of extinct species.

Thehigh-coverage genomes of theDenisovan
(1) and the Neandertal (2), from whom
present-day humans split 550,000 to 765,000

years ago (2), allowed the comparison of our

DNA to that of our closest extinct relatives. How-
ever, differences could be sought exclusively at
the sequence level and consequently did not
provide direct insights regarding epigenetic
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