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FOXP3+ regulatory T (Treg) cells enforce immune self-tolerance
and homeostasis, and variation in some aspects of Treg function
may contribute to human autoimmune diseases. Here, we ana-
lyzed population-level Treg variability by performing genome-
wide expression profiling of CD4+ Treg and conventional CD4+ T
(Tconv) cells from 168 donors, healthy or with established type-1
diabetes (T1D) or type-2 diabetes (T2D), in relation to genetic and
immunologic screening. There was a range of variability in Treg
signature transcripts, some almost invariant, others more variable,
with more extensive variability for genes that control effector
function (ENTPD1, FCRL1) than for lineage-specification factors like
FOXP3 or IKZF2. Network analysis of Treg signature genes identi-
fied coregulated clusters that respond similarly to genetic and en-
vironmental variation in Treg and Tconv cells, denoting qualitative
differences in otherwise shared regulatory circuits whereas other
clusters are coregulated in Treg, but not Tconv, cells, suggesting
Treg-specific regulation of genes like CTLA4 or DUSP4. Dense gen-
otyping identified 110 local genetic variants (cis-expression quan-
titative trait loci), some of which are specifically active in Treg, but
not Tconv, cells. The Treg signature became sharper with age and
with increasing body-mass index, suggesting a tuning of Treg
function with repertoire selection and/or chronic inflammation.
Some Treg signature transcripts correlated with FOXP3 mRNA and/
or protein, suggesting transcriptional or posttranslational regulatory
relationships. Although no single transcript showed significant asso-
ciation to diabetes, overall expression of the Treg signature was
subtly perturbed in T1D, but not T2D, patients.

immunoregulation | suppression

CD4+FOXP3+ regulatory T (Treg) cells are important medi-
ators of immune tolerance, prevent overwhelming immune re-

sponses, and regulate extraimmunological functions (1–3). Their
absence leads to lethal lymphoproliferation and multiorgan auto-
immunity in scurfy mice and in patients with immunodysregulation
polyendocrinopathy enteropathy X-linked syndrome.
Treg cells differ substantially from conventional CD4+ T cells

(Tconv) with respect to their transcriptomes. In mice, a canoni-
cal “Treg signature” of transcripts that are over- or underex-
pressed in Tregs relative to Tconv has been well defined (4, 5).
This signature encodes proteins ranging from cell-surface mol-
ecules (e.g., IL2RA, CTLA4) to transcription factors [e.g., FOXP3
or Helios (Ikzf2)] and includes several molecular mediators of
Treg action (6). The Forkhead family transcription factor (TF)
FOXP3 is essential for the specification and maintenance of Tregs
and plays an important part in determining the Treg signature (4,
7–9). However, FOXP3 is not completely necessary for the dif-
ferentiation of Treg cells, and some aspects of the Treg signature
are independent of FOXP3 (4, 10–12). A number of other tran-
scription factors have been reported to interact with FOXP3 and
to promote Treg function (refs. 13 and 14 and refs therein). In
addition, different Treg subphenotypes are dependent on differ-
ential expression of TFs, such as T-bet, Irf4, or PPARγ (15–17). We
have recently shown that several of these TFs make up, together

with FOXP3, a genetic switch that locks in the Treg phenotype (13).
The transcriptome of Treg cells has been less extensively studied in
humans although early studies indicate that several of the more
prominent members of the mouse Treg signature are also differ-
entially expressed in human Treg cells (18–20).
Dysregulation of Treg cells has been invoked in the de-

terminism of organ-specific autoimmune diseases such as type-1
diabetes (T1D) (21). Experimentally, genetic deficiencies that
reduce Treg numbers or some facets of their function result in
accelerated diabetes in mouse models (22–25), and Treg transfer
can be protective (22, 26, 27). Whether Treg defects are directly
implicated in the determinism of autoimmune disease remains
an open question. Some of the T1D susceptibility loci uncovered
by large genome-wide association studies (GWASs) may plau-
sibly influence Treg activity (e.g., IL2RA, IL2, CTLA4) (28). One
can hypothesize that programmed Treg defects render an in-
dividual globally more susceptible to unrestrained activity of
autoreactive cells or that Treg deficiencies occurring locally in
the target organ, perhaps in response to environmental or in-
fectious triggers, destabilize the local Treg/effector T equilibrium
and allow terminal organ damage (29, 30).
It is now recognized that the frequency of FOXP3+ Treg cells

in the blood of human T1D patients is comparable with that of
healthy subjects (30–32), as in NOD mice (29, 33). Whether
Tregs from T1D patients are dysfunctional is controversial (30,
32, 34–37), and it is possible that only one facet of their activity is
altered (38). Recent results also suggest that, in T1D patients,
effector T cells may be refractory to inhibition by Treg cells (39,
40) although this point has also been debated (30, 38). However,
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there is an intrinsic limitation to addressing this question ex-
perimentally in the human system: Only blood cells are readily
accessible, and the in vitro suppression assay, the only practica-
ble tool for functional evaluation, may not be relevant to the
control of diabetes in vivo.
Human genetic diversity and its adaptation to novel environ-

ments during out-of-Africa migrations have strong impacts on
genes of the immune system (41). Indeed, under the strong se-
lective pressure elicited by pathogens, immune system genes are
those that show the strongest marks of adaptation and positive
selection for variant alleles in different populations (42). In-
flammatory disease-associated variants such as those underlying
T1D are enriched in signatures of positive selection (43). Some of
these variants are eQTL (expression quantitative trait loci) that
affect transcriptional rate or mRNA stability (44) and may me-
diate the effect of inflammatory-disease susceptibility loci (45).
Little is known about the range of genetic and epigenetic

variation in Treg cells within the human species. Various studies
have found a wide (up to fourfold) range of variation in the pro-
portion of FOXP3+ Treg cells in healthy individuals (30, 32, 34–
37), as is the case in inbred mice (33). Here, we have assessed the
interindividual transcriptomic variability in Treg cells as this in-
terindividual variance encompasses and integrates all of the ge-
netic, epigenetic, environmental, and stochastic influences that
govern the Treg transcriptome of an individual. This study was
performed on cohorts of healthy subjects and patients with estab-
lished T1D, aiming to tease out aspects of this variability that
correlate with autoimmune diabetes.

Results
Genetic/Genomic/Immunologic Profiling. To explore the extent of
variation in Tregs among human individuals, we performed
a broad genomic, immunologic, and genetic profiling, with a par-
ticular emphasis on T1D. We collected a sample set from 229
individuals, comprising 83 T1D patients, 46 type-2 diabetes (T2D)
patients, and 100 healthy controls (Dataset S1). Recruiting was
split into three consecutive cohorts over 3 y because of financial
limitations, which also allowed adjustments in composition and
experimental design. Donors with T1D were sampled well after
diabetes onset (only one donor <1 y, and 95% >5 y) to avoid
confounders from inflammation and unstable glycemia surround-
ing onset. Donors with T2D were included in cohorts 2 and 3 to
flag changes in gene expression secondary to hyperglycemia and/or
insulin treatment. Six donors (cohort 2) were sampled on two in-
dependent occasions, several weeks apart, to assess the stability of
the traits observed. Age, sex, body-mass index (BMI), age of T1D
onset, disease duration, glycated hemoglobin (HbA1c), and insulin
requirement were recorded. Immunologic profiling included flow-
cytometric determination of Treg frequency among CD4+ cells,
levels of FOXP3 protein, and the proportion of CD25+ Tregs. The
expression of Helios and other Treg subset markers (CD39, CCR6,
CXCR3, and CCR4), were measured for some donors, as was Treg
in vitro suppressive activity.
The expression-profiling arm compared freshly isolated Treg

and Tconv cells from each individual. Treg (CD4+CD25hiCD127−)
and Tconv (CD4+CD25−CD127+) cells were purified from pe-
ripheral blood mononuclear cells (PBMCs) by two rounds of flow
sorting (Fig. S1) (sorted Tregs were mainly 80–90% FOXP3+). To
ensure a full representation of these CD4+ populations, they were
profiled without further split. RNAs from these cells were profiled
on Affymetrix ST1.0 microarrays, one batch of microarrays cor-
responding to each recruitment cohort. Of the profiles determined,
we retained 168 pairs with robust Treg and Tconv data (60 T1D, 30
T2D, 78 healthy controls). There were interbatch variation be-
tween the cohorts, and most of the bioinformatics analyses were
performed within each cohort and then cross-checked for concor-
dance. When the full power of the entire dataset was needed (e.g., to
compare T1D donors and controls), we used a generalized linear

mixed model to fit the data, using the residuals after fit to the
batch variable.

The Treg Cell Signature and Its Variability. The large number of
Treg and Tconv cells profiled allowed a robust definition of the
transcripts that distinguish human Treg and Tconv cells, group-
ing transcripts that were differential in the population means or
in at least 20% of the individuals. This core Treg signature in-
cluded 194 and 192 probes over- and underexpressed in Tregs
relative to Tconv (Treg-Up and Treg-Down, respectively; listed
in Dataset S2). However, because of the power provided by 168
individuals, significant Treg/Tconv differential expression was
detected for 7,975 probes [at a false discovery rate (FDR) ≤10−3],
indicating that the stronger differences resonate deeply across the
genome. The most differentially expressed genes included the
“usual suspects” of Treg biology, FOXP3, CTLA-4, IKZF2, and
IL2RA, overexpressed in Tregs, or ID2 and THEMIS overex-
pressed in Tconv cells (Fig. 1A). The signature has a high con-
cordance (>73%) with a quality Treg signature derived previously
on a different microarray platform (18). The signature encodes
products involved in a variety of processes and cellular localizations.
We then asked how the expression of the Treg signature genes

differs between individuals. Fig. 1B displays for individual donors
the Treg/Tconv expression ratio of Treg signature genes, ranked
by mean ratio. Several points can be made. First, the signature
was generally shared among all individuals. Second, some indi-
viduals showed marked departure from the population average,
with lower or even inverted Treg/Tconv ratios for some genes.
Third, there was a range in the variability of individual genes.
Some departed little from the population mean, including some
of the key defining transcripts (e.g., FOXP3, IKZF2) (Fig. 1C);
others were more divergent, denoted by vertical streaks in Fig.
1B, exemplified by ENTPD1 (encodes CD39, a Treg effector
molecule) (46, 47). Overall, there was more interindividual var-
iability in overall abundance for Treg signature genes than for
other transcripts, as indicated by the distribution of coefficients
of variation of signature genes relative to expression-matched
transcripts that are equivalently expressed in Treg and Tconv
cells (Fig. 1D).
These results indicate that there is a defined Treg signature

generally shared across the population, but with more inter-
individual variability than the transcriptome norm. This variance
may reflect variation of single genes, or in modules and pathways
that define the Treg-cell subphenotypes.

Coregulation of Treg Signature Genes. Eukaryotic transcriptomes
are organized into clusters of coexpressed genes, responding in
concert to regulatory cues through shared control mechanisms
(48). The interindividual variation across these datasets provided
an opportunity to identify such clusters among Treg signature
genes in the two parallel datasets from CD4+ Treg and Tconv
cells and to identify connections that are shared in these two
related cell types, and those that are specific (Fig. 2A). The per-
turbations introduced in the regulatory network by genetic, epi-
genetic, or environmental variance should result in detectable
correlation between coregulated gene pairs in Treg cells. Regu-
latory circuits that have the same structure but are tuned to dif-
ferent levels should yield similar correlated modules in Treg and
Tconv datasets, but regulatory interactions that do not operate in
Tconv cells should show up as lower correlation coefficients for
the corresponding gene modules in the Tconv dataset.
We first constructed a matrix of gene–gene correlation for all

Treg signature genes and used a partitioning clustering algorithm
to group those genes exhibiting multiple correlations into clus-
ters, optimizing the cluster structure by taking into account both
Treg and Tconv datasets (Materials and Methods) (similar cor-
relations were observed when each cohort was analyzed in-
dependently, indicating that the correlations were robust and not
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driven by batch effects). The results (Fig. 2B and listed in Dataset
S3) showed an array of gene clusters, which predominantly but
not exclusively grouped either up- or down-signature genes.
Several points could be made. First, there wasn’t one dominant
cluster grouping FOXP3 and the canonical Treg signature genes.
Instead, the latter are dispersed into different clusters (clusters 4,
7, 8, and 11 for FOXP3, IL-2RA, CTLA-4, and IKZF2, re-
spectively), FOXP3 itself belonging to a small cluster (together
with IKZF4, TIGIT, and the proliferation-controlling miRNA
precursor MIR21). These observations suggested that the major
Treg signature transcripts do not vary in lockstep within Tregs
and that variations in FOXP3 expression are not the unique
driver of the Treg signature tone. Second, side-by-side compari-
son of the maps of Fig. 2 showed that the patterns of gene–gene
correlation were partially different in Treg and Tconv cells: Some
clusters were equally “tight,” with comparable intracluster simi-
larity in both cell types (e.g., cluster 2, 3, 5, or 7). Several other
clusters were markedly less connected in the Tconv than in the
Treg datasets (e.g., clusters 1, 8, or 12), likely denoting regulatory
connections that are specific to Treg cells. Third, the cluster map

was very similar for Treg cells from T1D patients and control
individuals (Fig. S2), indicating that these structures are robust,
with comparable relationships in unrelated donors, and that these
differences in the regulatory network of Treg and Tconv cells do
not relate to T1D.

Genetic Basis for Variability in Treg Signature Genes. We then per-
formed an expression quantitative trait locus (eQTL) analysis to
identify and characterize the cis-acting genetic contribution to
interindividual variability in expression levels of Treg signature
genes. Genotypes at 951,117 SNPs were determined for 65 indi-
viduals (Exome and ImmunoChip, providing genome-wide cov-
erage with additional weight on exome and loci of immunologic
relevance). Rigorous quality control included genotype call rate,
sex misidentification, Hardy–Weinberg Equilibrium testing, and
Minor Allele Frequency (MAF) < 0.01; eight individuals and
84,461 SNPs were filtered out from later analyses. These genotypes
were used to search for cis-eQTLs, detected as association of RNA
expression levels (residuals of a mixed-model fit to batch, age, and
diagnosis to remove these confounders) with SNPs in a ±1-Mb
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Fig. 1. Interindividual variability in Treg signature transcripts. (A) Gene-expression profiles were generated from purified Treg and Tconv cells from blood of
168 individuals, and the average expression values are compared. (B) Treg signature transcripts are ranked according to mean differential expression (red
dots), and the Treg/Tconv ratio for each individual of Cohort3 is plotted. (C) Normalized microarray expression levels in Tconv and Treg cells of selected genes (on
a linear scale from 20 to 20,000, where 120 represents a 95% probability of expression); each dot represents 1 of 55 donors from cohort 3. (D) Histogram of gene-
wise coefficient of variation across the datasets for Treg signature genes or for a random expression-matched set of genes (P value, Wilcoxon rank-sum test).

Ferraro et al. PNAS Early Edition | 3 of 10

IM
M
U
N
O
LO

G
Y

PN
A
S
PL

U
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1401343111/-/DCSupplemental/sd03.xls
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1401343111/-/DCSupplemental/sd03.xls
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1401343111/-/DCSupplemental/pnas.201401343SI.pdf?targetid=nameddest=SF2


window around each gene. Although this study was not powered
for a high sensitivity, a number of strong eQTLs emerged (Fig. 3A
and listed in Dataset S4): 105 and 110 genes showed at least one
eQTL at 0.001 permutation threshold with a false discovery rate
(FDR) of 9% (49) in Treg and Tconv cells, respectively. As ex-
pected, many of those transcripts showed several associated SNPs,
in linkage disequilibrium and spread across the gene (e.g., ENTPD1,
FCRL1, and CD52) (Fig. S3). Interestingly, cis-eQTLs were not
detected for the most characteristic transcription factors, in partic-
ular FOXP3 or IKZF2 (Fig. 3B and Dataset S5).
Many of the eQTLs detected were shared in Treg and Tconv

cells, as illustrated by the comparison, in Fig. 3B, of the P values
of the best eQTL for each gene in both cell types. Some eQTLs,
however, were predominantly or uniquely significant in Treg or

Tconv cells (predominantly in Tregs for Up signature genes, and
vice versa). We queried the Treg and Tconv eQTLs for SNPs
previously associated with immune or inflammatory diseases
(Dataset S6). Only a few overlaps were found (e.g., ERAP2 in
Crohn disease), and these overlaps concerned only the less sig-
nificant GWAS hits.
Finally, we asked whether genetic variation accounts for all of

the variance observed in the Treg signature. We computed
a Variability Score (VS) for each gene, from the variance ob-
served between all individuals relative to the variance observed
between repeat samples drawn from the same donors (Materials
and Methods). The variance within these repeats from the same
donors incorporates both experimental noise and short-term
fluctuations, such that the VS should mainly reflect interindividual
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variation that is stable over time. Plotting this VS against the
eQTL score [–log10(P value)] for all genes shows that the genes
with strong eQTLs have a high variability score, providing valida-

tion of this metric. On the other hand, most genes with high VS had
no significant eQTL (Fig. 3C) (only 21.9% genes with VS >0.75
had an eQTL with score >4). With the caveat that the limited
power of this small dataset would miss weak genetic effects, this
dichotomy suggests that the high interindividual variability in Treg
signature genes has a cis-acting genetic basis for some genes
whereas other genetic and or nongenetic factors influence many
other transcripts.

Nongenetic Variation in Treg Signature Transcripts. We then asked
whether the expression of Treg signature genes varied with
individual characteristics of the donors. It has been unclear
whether the proportion of Tregs increases with age in humans, as
it does in mice (50). We first analyzed the frequency of Tregs
(% CD25+FOXP3+ cells among CD4+ T cells) relative to age, sex,
and BMI. None of the traits showed a significant correlation with
Treg frequency (Fig. S4 A–C). To study the association of age,
sex, and BMI with the expression of Treg signature genes, we fit
the expression of each Treg signature gene in a linear mixed
model with age, sex, and BMI as explanatory variables, and re-
trieved the coefficient for each term (to ensure that diabetes
would not influence the outcome, values for T1D patients and
healthy controls were fit independently). There was a strong bias
of the coefficients for the age variable, opposite for Up and
Down Treg signature genes, indicating a positive association
between age and the expression of Treg signature genes. This
observation was true for both T1D patients and control subjects
(Fig. 4A). This bias involved most of the Treg signature, although
more marked for some clusters than for others (Fig. S4G). We
calculated “Treg indices” by averaging the normalized expression
of all Treg signature genes. The Treg Up index increased grad-
ually, with roughly a 50% increase between 20 and 60 y of age
(Fig. 4B). A parallel trend was noted, in both Tconv and Treg cells,
for the Treg Down index. There was no bias relative to sex, save for
a few ChrX- or Y-encoded genes, but we found an association with
BMI, which was more marked in controls than in T1D patients
(Fig. 4A).
These results suggest that the expression of Treg-specific genes

is modulated by age and metabolic parameters, Treg cells ac-
quiring a more distinctive phenotype with age.

Transcripts Controlling Treg Numbers and Function. As in mice, the
proportion of blood Treg cells varies markedly between humans,
but its determinism is unknown. We thus probed whether Treg
signature genes or other elements of the Treg transcriptome might
determine these traits. Across our cohorts, the proportion of
FOXP3+ among CD4+ T cells varied within the usual range (2–
8%), with no relation to FOXP3 mean fluorescence intensity
(MFI). We correlated Treg frequency values with the expression
of each gene across the Treg datasets (after normalizing for age,
sex, diagnosis, and BMI). As illustrated in Fig. 5 A and B and
Dataset S7, the overall expression of Treg signature genes did not
associate particularly strongly with Treg frequency; rather, Treg
frequency correlated with other transcripts not commonly associ-
ated with Treg cells but with cell cycle (e.g., histone genes) or
activation (POL2RE, PKM, NDRG1). In addition, none of the
genotyped SNPs associated significantly with Treg proportions.
On the other hand, there was a clear bias in the correlation

coefficients between Treg signature expression and the level of
FOXP3 protein expression, assessed as the MFI in flow-cyto-
metric analyses (Fig. 5 C and D and Dataset S7). Most of the
canonical Treg signature genes, with the exception of FCRL3,
were biased toward low but positive correlation coefficients (and
conversely for Treg-down signature genes; χ2 P= 10−14 and 10−40).
Transcripts most correlated with FOXP3 MFI likely include direct
FOXP3 targets, or conversely encode factors that regulate FOXP3
itself. As evidence for the former, genes with highest absolute
correlation to FOXP3 MFI were also enriched in FOXP3-binding
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sites (extrapolating from FOXP3 binding to orthologs in mice)
(14). FOXP3-correlated transcripts include CCR8, a marker of
Treg cells with higher FOXP3 levels (51), but also genes that do
not belong to the Treg signature such as CD101, which has been
associated with Treg potency (52).
We compared (Fig. 5E) how different transcripts related to

FOXP3 mRNA (microarray signal intensity) or protein (MFI). A
similar bias in the correlation with both metrics was observed for
much of the Treg signature genes (diametrically opposite for Up
and Down transcripts), as would be expected for genes whose
expression is controlled by FOXP3 or that control its transcrip-
tion (TRIB1, NUSAP1, WNT7A, PTPN13). Interestingly, others
showed correlation to FOXP3 protein but not mRNA, suggest-
ing that they may influence posttranslational processing of
FOXP3 (CCR8, CD101, CD93).
It is not possible to measure human Treg inhibitory activity in

vivo, and the in vitro suppression assay serves as a surrogate test
for Treg function. To ask which transcripts might associate with
suppressive activity, we correlated the abundance of each tran-
script in Treg cells with suppressive activity of purified blood Treg
cells in 23 donors (Fig. 5F) (for logistic reasons, this analysis was
performed only on cohort 3 donors). No single gene stood out,
perhaps with the exception of TIGIT, already reported as im-
portant for suppressive function (53, 54). However, there was
a general skew of Treg Up signature genes, most of which were
positively associated with suppression (Fig. 5G) (Wilcoxon rank-
sum test P = 6 × 10−7). In contrast, transcripts underexpressed in
Treg cells were not biased with regard to suppression.

Differential Expression of the Treg Signature in T1D Patients and
Controls. To search for variation in the transcriptomes of Treg
or Tconv cells that would track with T1D in our cohorts, we first
performed a simple marker-trait association, comparing the ex-
pression level of individual genes in T1D donors and age-
matched healthy controls. As illustrated in Fig. 6A, no individual
gene scored at a genome-wide level of significance [−log10(P) ≥
5.5], in either Treg or Tconv cells, with the exception of LARP4
(a member of the La ribonucleoprotein domain family) and
TLR1 in the Tconv transcriptome. Neither did the T1D candidate
genes highlighted by large GWAS studies show biased expression
(red dots in Fig. 6A).
To assess whether T1D might be associated with changes in the

Treg signature as a whole, we compared the population-wide mean
and variance between age-matched T1D and healthy controls for
all Treg signature genes. On the “volcano plot” displayed in Fig.

6B, no particular gene stood out. However, the signature as a whole
was skewed, with underexpression of a majority of Treg-up signa-
ture genes in T1D individuals (P = 3 × 10−5), even if the changes
were very subtle for each individual transcript [mean FoldChange
(FC) in the 0.9–0.95 range]. T2D patients compared with age-
matched controls did not show this skew (Fig. 6C) (indeed, the
opposite). We found no correlation between Treg signature and
HbA1c levels, confirming that the skew observed in T1D patients
was not a result of confounding factors such as insulin treatment
or hyperglycemia.

Discussion
Given the widespread functions of Treg cells, interindividual
variation in Treg numbers and function in humans should have
a significant influence on individual resistance to infections,
autoimmune disease, or tumors. The degree of Treg activity can
have deleterious effects at either end of the spectrum (high
suppression leading to low autoimmunity but to stunted anti-
infectious responses, and vice versa). In addition, Treg action can
have paradoxically favorable effects on anti-infectious responses
(55, 56). Thus, selection acting on loci that condition Treg func-
tion probably maintains equilibrated Treg function, with wide
enough range at the level of the species that diverse challenges can
be met by at least some individuals. The changing environmental
challenges that have accompanied human migrations have prob-
ably molded the gene pool in this regard, as they have immune
response genes in general (41, 42). The present study was designed
to describe, on a large scale, the extent of Treg functional vari-
ability and to track its genetic and transcriptional underpinnings,
with a particular emphasis on the association with type-1 diabetes.

Treg Transcriptomic Variability. Differential expression of Treg
signature genes in Treg and Tconv cells was found generally
across the 168 donors analyzed, none of which had a broad de-
viance from the population mean that affected the Treg signa-
ture as a whole. On the other hand, significant variance in the
abundance of individual Treg signature transcripts was observed,
greater than the genome-wide mean. This variance was uneven,
more pronounced for Treg genes associated with suppressive
function than for lineage-specification genes such as FOXP3 or
IKZF2 (although these did show some variation, at the level of
mRNA or protein abundance). A particularly clear example of
variation in a Treg effector transcript is ENTPD1, which encodes
CD39, an important ecto-ATPase in the adenosinergic pathway
of suppression. It is not part of any of the Treg-coregulated gene
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clusters and varies largely independently, which is consistent with
the strong cis-eQTLs detected at the locus (also previously ob-
served in ref. 57). Does the wide range of variation conditioned
by this variant reflect neutral genetic noise or differential
requirements for activity of Treg adenosinergic suppression in
different infectious or tumor contexts? CD39 has widespread
expression in, and relevance to, platelet function, coagulation,
and nervous-system regulation, such that the evolutionary drive
of this variability may not be immunological.
From where does this variability arise? Some was due to cis-

acting genetic variants, with highly significant cis-eQTLs emerging,
even from a relatively small sample size. Here again, eQTLs were
found in genes involved in effector or modulator functions
(ENTPD1, BCAS1, FCRL1) rather than lineage-determining fac-
tors. Some of these eQTLs were predominantly manifest in Tregs,
particularly those affecting Treg up signature transcripts, either
because these transcripts are expressed only at low levels in Tconv
cells, with correspondingly less power for eQTL detection, or be-
cause these SNPs directly affect regulatory mechanisms that are
uniquely active in Tregs. Many Treg eQTLs were shared with

Tconv cells. With one exception (SESTD1), these shared eQTLs
did not affect differentially expressed signature genes, but corre-
spond to functions that are generic to CD4+ T cells (consistent
with this notion, this “sharing” was more pronounced in this study
than when eQTLs in more distantly related cell-types are com-
pared) (58).
However, an important fraction of the variability does not have

a readily discernable genetic component. Most of the transcripts
with a variability score in the same range as those with strong cis-
eQTLs do not show any hint of sizeable cis control. Some of these
situations might correspond to trans-QTLs (i.e., association of
transcript expression to genetic variants on other chromosomes),
which the study was not powered to detect; but trans-eQTL
effects are generally weaker than cis-eQTLs and would be un-
likely to account for a large amount of the variability. Thus, we
suggest that much of this variability stems from nongenetic ori-
gins: from inheritable epigenetic traits such as parental imprint-
ing, from infectious and other immunologic challenges in the
individual’s history, or from other physiological influences. An
example is provided by the effect of age, with a clear increase in
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the overall expression of Treg signature transcripts in older indi-
viduals. In essence, Treg cells become more Treg-like with age.
This change may correspond to a cell-autonomous evolution of
the Treg population with time, perhaps as a gradual selection of
clones with better survival characteristics, perhaps an element
of “immuno-senescence.”Alternatively, it may be a reaction to the
chronic inflammatory tone (with higher levels of proinflammatory
cytokines and adhesion molecules) found in aging individuals (59).
Some of this variability could be grouped into coregulated sets

of genes. Most of the coregulation patterns were similar in Treg
and Tconv cells. This result is not unexpected because these are
very closely related differentiated cell types, but it gives confi-
dence as to the robustness of these structures. Further, these
maintained patterns of coregulation indicate that, even though
these Treg signature genes are differentially expressed in Treg and
Tconv cells, their regulatory connections are similar; differences
in expression may simply reflect a different tuning of these
pathways in the two cell types. On the other hand, some of the
pairwise gene–gene correlations or coregulated clusters were
unique or at least highly preferential to the Treg dataset, and
these may reflect Treg-specific circuits. These Treg-specific rela-
tionships involve some key Treg-specific genes such as CTLA4,
TNFRSF9 (4.1BB), or DUSP4.
Strong interindividual variation in the proportion of Treg cells

among blood CD4+ T cells has been observed in many studies and
was also seen here (1.9–8.9%). Perhaps counterintuitively, there
was no association between this frequency and the intensity of the
Treg signature genes in general, nor with FOXP3 expression in
particular. This conclusion was confirmed by the lack of correla-
tion between Treg frequency and FOXP3 MFI. Stronger Tregs do
not make for more Tregs. Some transcripts that did correlate with
Treg frequency are plausibly related to cell division or survival, but
others such as FADD or PDRM2 may denote more specific effects
and will be interesting to track in replicative studies.
In contrast, there was a clearly biased association of Treg sig-

nature genes with the intensity of FOXP3 protein expression.

Network analysis (Fig. 2) showed that FOXP3 is not the unique
and dominant driver of the network, in keeping with the now
accepted notion that FOXP3 is a key important player but not the
unique player in Treg signature specification. Some of this asso-
ciation likely reflects the importance of FOXP3 in controlling the
expression of Treg signature genes, and many of these (e.g.,
CTLA4, TRIB1, RTKN2, IKZF2) are direct FOXP3 targets in
mouse cells (14). Others may actually be direct regulators of
FOXP3 transcription or of protein stability. In this regard, it is
interesting to note that there is more interindividual variability in
FOXP3 protein than in FOXP3 mRNA and only a minor re-
lationship between the two, suggesting translational or posttransla-
tional control. Some of these potential modulators of FOXP3 in-
clude genes such as CCR8 or CD101, which do not belong to the
Treg signature but have been previously tied to Foxp3 expression
and/or Treg potency (51, 52), and several genes involved with lipid
uptake and metabolism (LDLR, TRIB1), possibly reflecting a role
in cellular lipids in controlling FOXP3, or genes of yet unrecognized
relevance that may warrant further exploration (CD93, MGAT4A).
Interestingly, CCR8 or CD101 seem to correlate with FOXP3
protein but not mRNA, possibly suggesting that they are involved
with FOXP3 posttranslational regulation.

Treg Genomic Variability and Disease. Given their importance in
immunoregulation, the notion that Treg defects have a causal
implication in the susceptibility to autoimmune diseases has
attracted much interest, with arguments based on the relevance
of some GWAS hits to Treg physiology (IL2RA, CTLA-4) and on
reports, albeit not always consistent, of defective Tregs in some
autoimmune diseases such as multiple sclerosis. Do the param-
eters of Treg variability analyzed here relate to T1D?
At the level of individual genes, there was no such connection.

None of the transcripts individually showed significant associa-
tion with T1D in the Treg or Tconv datasets, even at relaxed
thresholds. This result is probably not surprising, as one might
not expect that any one transcript would stand out, given the
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cellular and regulatory complexity of T1D pathogenesis. Simi-
larly, the gene-coregulation patterns of Fig. 2 were largely su-
perimposable for T1D and control donors. On the other hand,
there were clear indications that combinations of genes are af-
fected in the comparison of T1D patients to age-matched controls:
When the Treg signature was tested as a whole, deviations in in-
dividual genes that were individually very small showed a signifi-
cant collective bias.
We cannot formally rule out that some of these combinatorial

signals are a secondary consequence of the inflammation and
glycemic dysregulation that result from T1D. On the other hand,
several arguments argue against this interpretation: (i) patients
in this study had established and stable disease, several or many
years removed from the inflammatory perturbations that ac-
company onset; (ii) T2D patients, half of which were insulin-
dependent, were included as controls and did not show these
effects; (iii) there was no relationship between the signature and
glycemic control as reflected by HbA1c; and (iv) the decreased
expression of Treg signature genes in T1D patients was precisely
the opposite of that seen with both aging and T2D, both of which
have a marked inflammatory component. This bias could not be
ascribed to any cis- or trans-acting genetic locus. More generally, we
suggest that the “state” of Treg population, as reflected by its
mRNA expression profile, incorporates some genetic elements but
also many nongenetic ones: parentally transmitted epigenetic traits,
epigenetic remodeling during development, microbiome influence,

and immunologic history. It is this integration that may define the
susceptibility of a given individual to autoimmune disease.

Materials and Methods
Detailed methods are provided as SI Materials and Methods.

Briefly, blood samples were obtained from 229 individuals (83 T1D
patients, 46 T2D patients, and 100 age-matched controls). PBMCs were
prepared and double-sorted immediately using a strict standard operating
protocol to minimize environmental, technical, and circadian variation, into
Treg (CD4+CD25hiCD127lo) and Tconv (CD4+CD25−CD127hi) pools. Trizol-
prepared RNAs were profiled on Affymetrix ST1.0 HuGene arrays. Data from
three different cohorts were normalized by Robust Multichip Average and
analyzed in GenePattern Multiplot. Batch effects were removed by first
means-normalizing the data of each batch, then using residuals of a general-
ized linear model fit to the batch variable. Correlation to donor variables,
immunophenotypes, or Treg suppression results were tested in R or S-Plus. SNP
genotyping was performed for 65 donors on the Illumina Infinium Human-
OmniExpressExome (951,117 SNPs) and quality-controlled data were analyzed
using PLINK v1.07 software (60). In vitro Treg suppression of anti-CD3 activated
Tconv cells was as described (30), using as responder cells frozen aliquots from
a single donor.
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