
©
20

13
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

nature immunology  advance online publication	 �

r e s o u r c e

The differentiation of abT cells from thymic precursors is a complex process essential for adaptive immunity. Here we exploited 
the breadth of expression data sets from the Immunological Genome Project to analyze how the differentiation of thymic 
precursors gives rise to mature T cell transcriptomes. We found that early T cell commitment was driven by unexpectedly  
gradual changes. In contrast, transit through the CD4+CD8+ stage involved a global shutdown of housekeeping genes that 
is rare among cells of the immune system and correlated tightly with expression of the transcription factor c-Myc. Selection 
driven by major histocompatibility complex (MHC) molecules promoted a large-scale transcriptional reactivation. We identified 
distinct signatures that marked cells destined for positive selection versus apoptotic deletion. Differences in the expression of 
unexpectedly few genes accompanied commitment to the CD4+ or CD8+ lineage, a similarity that carried through to peripheral 
T cells and their activation, demonstrated by mass cytometry phosphoproteomics. The transcripts newly identified as encoding 
candidate mediators of key transitions help define the ‘known unknowns’ of thymocyte differentiation.

In contrast, successful rearrangement of the gene encoding TCRβ in 
the DN subset initiates several rounds of proliferation essential for αβ 
differentiation and the generation of CD4+CD8+ double-positive (DP) 
thymocytes14, in which TCRα rearrangement takes place. DP thymocytes 
screen thymic cortical epithelial cells for the potential of their TCR to 
interact with complexes of peptide and major histocompatibility complex 
(MHC)15–18. Those DP thymocytes bearing TCRs that cannot bind self 
peptide–MHC (thought to be the majority) die within 3–4 d (ref. 19). 
Those DP thymocytes that express a TCR that can interact with MHC 
class I or MHC class II molecules are positively selected and correspond-
ingly mature as CD4−CD8+ single-positive (CD8SP) or CD4+CD8− 
single-positive (CD4SP) thymocytes (lineage commitment)20. This posi-
tive selection process differs from β-selection, as it occurs in absence of 
extensive proliferation. If the affinity of the TCR-peptide-MHC interac-
tion is too high, thymocytes are eliminated by apoptosis (clonal dele-
tion) or are diverted into alternative lineages such as CD8αα+ T cells or 
Foxp3+ regulatory T cells21,22. Thymocytes that survive these processes 
are exported from the thymus and undergo a phase of post-thymic matu-
ration to become functional CD4+ or CD8+ T cells23.

Several of the molecular mediators required for progression 
through certain stages of thymocyte differentiation have been defined 
by genetic approaches. What is lacking is a general perspective of how 
those and other pathways integrate to direct thymocyte differentiation 
in an unperturbed system. Although many studies have profiled thy-
mocyte transcriptomes24–33, they focused on only limited transitions 
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or selected checkpoints. Here we revisited the entire spectrum of dif-
ferentiation states in the αβ T cell branch of the lymphoid tree from 
a transcriptional standpoint, using the breadth of ImmGen data sets. 
This analysis showed unexpected aspects of T cell differentiation and 
identified candidate genes whose coordinated regulation at certain 
transitions hinted at important functions during thymocyte selection 
and maturation.

RESULTS
Overall perspective of T cell differentiation
We generated gene-expression profiles from every stage of thymocyte 
maturation, from early thymic progenitor (ETP) to the most mature 
SP thymocyte ready for export from the thymus (complete list of 
population names, abbreviations and markers used for cell sorting, 
Supplementary Table 1). We also included profiles from bone marrow 
progenitors and peripheral naive T cells. All data sets were generated 
in duplicate or triplicate from cells obtained from 6-week-old C57Bl/6 
male mice. To validate these data, we first assessed the activity of over 
50 well-characterized genes that mark key events in thymocyte dif-
ferentiation, such as Rag1, Tcra and Tcrg, and observed the expected 
expression patterns (Fig. 1a, Supplementary Fig. 1 and data not 
shown). We used several mathematical tools for multivariate analysis 
to determine the relationships between populations. Unsupervised 
hierarchical clustering reproduced the known differentiation sequence 
with notable accuracy (Fig. 1b), which indicated that there were no 
hidden, unexpected findings in the αβ T cell branch of the hematopoi-
etic tree determined over the past three decades and that transcrip-
tional relationships do evolve linearly along differentiation.

We then used principal-component analysis to map cell popula-
tions in three-dimensional space (Fig. 1c), which again matched 
the differentiation sequence but also grouped stages into distinct 
‘pods’, such as the tightly knit group of mature SP cells. Principal-
component analysis of the entire ImmGen data set identified a domi-
nant component (PC1; 73% of variance) that tracked ‘generically’ 
with maturation in lineages of the immune system (data not shown), 
reminiscent of the major ‘differentiation’ component observed in 
multivariate mass cytometry analysis of bone marrow cells34. The 
maturation of γδ T cells proceeded directly from precursors at DN 
stage 3 (DN3), whereas αβ T cells first ‘regressed’ along this principal 
component through the intermediate SP (ISP) and DP stages. For 
subsequent analyses, we excluded γδ T cells35 and the DN4 subset 
(which incorporates both αβTCR and γδTCR thymocytes).

We visualized the magnitude of transcriptional changes through-
out differentiation better by plotting the cumulative Euclidean dis-
tance between populations (Fig. 1d) and the number of transcripts 
induced or repressed at each transition (Fig. 1e). These two metrics 
identified three main ‘tectonic shifts’: between bone marrow pre-
cursors and ETPs; at the transition through DN3a; and (the strong-
est such shift) around the DP compartment. Contrary to what has 
been shown for cells that develop when cultured with OP9 mouse 
bone marrow stromal cells expressing the Notch ligand Delta-like 1 
(OP9-DL1 cells)31, in vivo commitment to the T cell lineage at the 
DN2a-to-DN2b transition was associated with relatively moderate 
changes (Fig. 1d,e). Although DP blasts resembled earlier β-selected 
populations, small DP cells were very different. Small DP thymocytes 
were also very different from CD69+ DP thymocytes, which indicated 
that TCR signaling in DP thymocytes initiated yet another major 
transcriptional change. In contrast, the transition from CD69+ DP 
thymocyte to terminal CD4SP or CD8SP cell involved comparatively 
minor changes, and CD4+ or CD8+ cells looked extremely similar 
from this perspective (Fig. 1d,e). Finally, egress from the thymus to 

the periphery had a very small effect on transcription. Thus, relation-
ships among the transcriptomes recapitulated the accepted develop-
mental progression of thymocyte differentiation and provided several 
new insights into the transcriptional basis of key transitions.

Early T cell differentiation
The major landmarks of early T cell differentiation (that is, loss of 
B cell potential at the ETP stage and irreversible commitment to the 
T cell lineage at the DN2a-to-DN2b transition) happen in a rather 
discrete manner9. In contrast, the transcriptional changes in most 
genes, including those encoding many key regulators, were gradual. 
For example, the expression of Bcl11b, which encodes a T lineage–
commitment factor32,36,37, not only increased from the DN2a stage to 
the DN2b stage, when commitment actually occurs, but also before 
(ETP to DN2a) and after (DN2b to DN3a) that time (Supplementary 
Fig. 1). The gradual nature of gene expression changes was a com-
mon feature throughout early T cell differentiation (discussed below) 
and may indicate that these transitions are not ‘radical’ events but 
instead proceed by degrees or, more prosaically, that they are not 
synchronized with changes in the few cell-surface markers used to 
identify differentiation intermediates.

To group those transcripts with similar behavior during early thy-
mocyte differentiation, we applied k-means clustering to the set of 
2,088 genes with the most variable expression. The resulting clus-
ters (named by a characteristic gene or group of genes; Fig. 2a,b and 
Supplementary Table 2) included not only genes encoding molecules 
with previously assigned functions in thymocyte differentiation (for 
example, about half of the probes for the ‘Tcf-1 and Lef-1’ and ‘Cd4 
and Cd8’ clusters) but also many genes whose functions have not 
yet been studied in T cells to our knowledge, which provided a rich 
resource for discovering additional molecular participants in thymo-
cyte differentiation.

An important feature of early T cell differentiation is the shutdown of 
programs of progenitor and non-T cell lineages38. The ‘c-Kit’, ‘Cd34’ and 
‘PU.1’ clusters (Fig. 2a,b and Supplementary Table 2) contained genes 
that were gradually downregulated from hematopoietic stem cells to 
DN3 cells, including those encoding markers of hematopoietic progeni-
tor cells, such as Flt3, Cd34, Ly6a (Sca-1) and Kit, as well as a small group 
of genes typical of non-T cell lineages (B cells, NK cells or myeloid cells). 
Transcriptional regulators in these clusters included those encoded by 
Bcl11a, Hhex, Jun, Meis1, Mef2c and Sfpi1 (PU.1) (Fig. 2c).

Commitment to the T cell lineage is associated with the rear-
rangement of Tcrb, Tcrg and Tcrd loci and induction of TCR signal-
ing machinery. The ‘Gata-3’ and ‘Tcf-1 and Lef-1’ clusters that were 
upregulated in early thymocytes and reached a plateau around the 
DN3a stage of T cell differentiation (Fig. 2a,b) included genes encod-
ing molecules involved in recombination (Rag1 and Lig4) and a major 
subset of genes encoding molecules related to TCR signaling (Cd3d, 
Cd3e, Cd3g, Lck, Itk, Grap2 (GADS), Rasgrp1, Zap70, Cbl and Nck2; 
Supplementary Fig. 2). Several notable genes encoding proteins with 
probable signaling functions were also in these clusters (Fig. 2b). 
For example, Arpp21 encodes RCS, which is a competitive inhibitor 
of calmodulin-dependent enzymes, including calcineurin39, and is 
thus a putative negative regulator of TCR signaling. A thymocyte-
specific isoform of this protein is reported to be expressed from DN2 
onward and downregulated after positive selection40. The diacylglyc-
erol (DAG) kinase DGKε (encoded by Dgke), which converts DAG 
to phosphatidic acid, may also regulate TCR signaling at this stage, 
as has been suggested for DGK-α and DGK-ζ41,42. More generally, 
there were notable shifts in the entire DGK family during thymocyte 
differentiation (Fig. 2d).
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Signaling via the Notch family of receptors is necessary for com-
mitment to the T cell lineage and is indispensable at all steps of T cell 
differentiation before the DP stage8,9. Direct Notch targets were dis-
tributed across multiple clusters with very different patterns of expres-
sion. Many canonical Notch targets, such as Ptcra (which encodes 
pre-TCRα)43,44, Dtx1, Il7r45 and Notch1 itself46 were in the ‘preTCRα’ 
and ‘Il7r’ clusters that peaked around DN3a (Fig. 2a), consistent with 
the idea that DN3a cells receive the strongest Notch signaling46,47. 
A few targets, such as Nrarp and Hes1 (in corresponding clusters), 
were upregulated and reached a plateau as early as in ETP thymocytes 
(Fig. 2a). Two Notch targets of particular interest were the transcrip-
tion factor–encoding genes Tcf7 (refs. 48,49) and Bcl11b32,36,37 (both 
in the ‘Tcf-1 and Lef-1’ cluster). These genes were upregulated early, 
then their expression reached a plateau by DN3a and was maintained 

high thereafter, even after downmodulation of Notch signaling after 
β-selection. Thus, Notch signaling is required for the induction but 
not the maintenance of these key regulators of T cell differentiation, 
consistent with the finding that Notch is required early in T cell differ-
entiation but is dispensable for maintenance of T cell identity. Finally, 
Myc50 (from the ‘c-Myc’ cluster) had yet another pattern of steady 
expression early and an abrupt decrease in expression in DP thymo-
cytes. It is therefore very likely that additional factors other than Notch 
regulate expression of Notch targets, which results in the observed 
diversity of expression patterns in early thymocyte differentiation.

T cell program induced by b-selection
TCRβ proteins formed after productive rearrangements of the Tcrb 
locus combine with the germline-encoded pre-TCRα chain (preTCR) 
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Figure 1  ‘Birds-eye’ view of transcriptome  
changes during the course of T cell differentiation.  
(a) Expression of Tcra, Rag1 and Kit in various  
bone marrow and thymocyte populations  
(horizontal axis; abbreviations, Supplementary  
Table 1), presented as the maximum-normalized  
mean. (b–d) Hierarchical clustering (b), principal- 
component analysis (c) and heat map of Euclidian  
distances between various populations (d; top and  
right margins), calculated with the 15% of  
probes with the greatest difference in expression  
among these subsets and with expression  
values >120 for at least one of the subsets.  
Expression values were log2-transformed  
and row-standardized before the analysis.  
(e) Probes upregulated (red) or downregulated  
(blue) by twofold or more at various transitions (arrows, horizontal axis) during T cell differentiation. Filled symbols, total probes; open symbols, probes 
not part of the proliferation signature.
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Figure 2  Dynamics of gene expression during early T cell differentiation. K-means clusters of genes with different expression profiles during early  
T cell differentiation. (a) Expression of genes (log2-transformed mean-centered; black lines) and cluster centroids (gray line) for each cluster (named for 
a characteristic gene or group of genes in the cluster; complete list of genes in each, Supplementary Table 2). (b) Heat maps of the expression of genes 
(right margin) in the PU.1 (left), TCF-1–LEF-1 (top right) and CD4-CD8 (bottom right) clusters. (c) Heat maps of the expression of genes encoding 
transcriptional regulators (right margin) from various clusters (left margin). (d) Heat map of the expression of genes encoding diacylglycerol kinases 
(right margin) whose expression changed by threefold or more during early T cell differentiation.
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in DN3 thymocytes to allow β-selection, a process that drives a burst 
of proliferation and phenotypic progression to the stages DN4 (with 
downregulation of CD25 expression), ISP (with upregulation of CD8 
expression) and DP (with upregulation of the expression of both CD4 
and CD8)51. Upregulation of CD28 expression is one of the earliest 
marks of β-selection and occurs before the complete downregulation 
of CD25 expression, which distinguishes post-β-selected DN3b cells 
from unselected DN3a cells12. The transition from DN3a to DN3b 
was associated with one of the most prominent shifts in the thy-
mocyte transcriptome (Fig. 1c–e). Much of this change was related 
to proliferation (>48% of upregulated genes; Fig. 3a) or metabo-
lism (data not shown). Genes encoding known components of the 
β-selection program were also included in the ‘TCRα’ and ‘Cd4 and 
Cd8’ clusters (for example, Cd4, Cd8a, Cd8b1 and Rorc), along with 
genes encoding several regulators not yet recognized in the context 
of thymocyte differentiation (Chd1, Klf7, Mef2a, Meir1, Pou6f1 and 
Zfp280d (which encodes Suhw4); Fig. 2b,c).

Do all TCR-mediated signals proceed similarly? We analyzed the 
overlap between genes induced by signaling from the pre-TCR (DN3a-
to-DN3b transition) or the αβTCR in immature DP thymocytes (small 
DP–to–CD69+ DP transition) or in peripheral T cells (CD8+ T cells from 
unchallenged OT-I mice (which express an ovalbumin-specific TCR) 
versus those from OT-I mice challenged with ovalbumin-expressing  

Listeria monocytogenes) to determine whether a common tran-
scriptional program was engaged downstream of these receptors at 
various stages of T cell differentiation. Proliferation signature genes 
were strongly induced by both the pre-TCR at the DN3 stage and 
the αβTCR in peripheral T cells but not in DP thymocytes, and we 
therefore excluded those from this analysis (Fig. 3b). Unexpectedly, 
transcriptional programs induced by β-selection and peripheral T cell 
activation overlapped considerably, with very few genes selectively 
induced by the pre-TCR (those included Rorc, Zap70, Cd8, Etv5 and 
Ikzf3). In contrast, TCR signaling at the DP stage seemed to be very 
distinct from the β-selection transcriptional program. Genes encod-
ing several markers of TCR signal strength (Cd69, Cd5 and Nr4a1) 
were induced downstream of both the pre-TCR and the αβTCR in DN 
and DP thymocytes, respectively, but the magnitude of their induction 
was lower during β-selection (Fig. 3b).

Pre-TCR signals are known to antagonize Notch signaling46,47. 
Accordingly, genes encoding a wide array of components of the 
Notch pathway were downregulated after β-selection (Fig. 3a): 
Notch1 and Notch3 themselves; Lfng, which encodes a glycosyltrans-
ferase that enhances the sensitivity of Notch receptors to Delta-like 
ligands; Maml2, which encodes a Notch transcriptional coactivator; 
Dtx1, Dtx3 and Dtx3l, which encode members of Deltex family of  
Notch regulators; and Hes1, Il2ra, Ptcra (pre-TCRα), which encode 
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Figure 3  Transcriptional footprint of β-selection.  
(a) Change in expression (horizontal axis) versus  
P value (t-test; vertical axis) for all probes (black),  
those corresponding to the proliferation signature  
(blue) and components of Notch signaling pathway  
(red) in thymocyte stage DN3b versus (vs)  
thymocyte stage DN3a, presented as a volcano  
plot. Numbers in corners indicate proliferation- 
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(bottom right). (b) Comparison of changes in gene  
expression induced by pre-TCR signaling in DN  
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Notch targets44. Genes encoding other Notch targets, such as Il7r45,50 
and Myc14,50,52, were also downregulated at the transcriptional level, 
but with delayed kinetics (Fig. 3c). We also observed delayed down-
regulation of c-Myc protein (Fig. 3d). The abundance of c-Myc protein 
actually increased threefold after β-selection (Fig. 3d), in accordance 
with its mitogenic role at the β-selection checkpoint14,50,52,53, then it 
was almost completely undetectable by the DP stage. We first observed 
this decrease in the abundance of protein at the ISP stage without a 
substantial decrease in mRNA (Fig. 3d), a divergence that coincided 
with the upregulation of the expression of genes encoding several 
of post-transcriptional and functional regulators of c-Myc: Trpc4ap, 
which encodes a molecule that targets c-Myc for ubiquitination54; and 
Mxi1 and Sin3b, which encode molecules that antagonize transactiva-
tion functions of c-Myc–MAX dimers55,56 (Fig. 3d). Together these 
observations hinted at post-transcriptional mechanisms that regulate 
c-Myc expression and activity.

In addition to c-Myc activity53, the burst of proliferation triggered 
by β-selection requires signaling via both the pre-TCR and Notch57,58 
and is augmented by signals from the receptor for interleukin 7 (IL-7R).  
However, pre-TCR expression shut down Notch signaling and 
therefore negatively regulated those mitogenic pathways. Thus, 
this delayed shutdown may serve as a molecular timer that sets in 
motion the transcriptional changes ultimately associated with tran-
sition to the quiescent small DP stage (Fig. 3e). Accordingly, when 
we prevented the shutdown of Myc expression by ectopic expression 
of Myc at the DP stage, DP thymocytes did not acquire the small cell 
size characteristic of the resting small DP stage (Supplementary 
Fig. 3a). The positive correlation between Myc expression and the 

size of DP cells (Supplementary Fig. 3b) indicated that down-
regulation of Myc may be one of the key molecular events that 
drives the transition toward the quiescent small DP phenotype. 
Consistent with these results, both deletion of Myc and transgenic 
expression of the c-Myc inhibitor MAD1 at the DN3 stage lead to 
much smaller thymocytes53,59.

Small DP cells
Transition from the DP blast stage to the small DP stage was associ-
ated with the greatest change to the thymocyte transcriptome. An 
unusual feature of this shift was that it seemed many more genes were 
downregulated (1,448 probes with a ‘fold change’ of <0.5) than were 
upregulated (225 probes with a ‘fold change’ of >2; Fig. 1e). Much of 
this transcriptional shutdown affected genes controlling prolifera-
tion and various ‘housekeeping’ activities such as translation, RNA 
processing and many metabolic processes (Supplementary Fig. 4 and 
data not shown). This observation was exemplified by downregulation 
of the ribosomal protein S6 (a part of the 40S ribosomal subunit) at 
the transcriptional and protein levels (Supplementary Fig. 5).

The broad shutdown of genes encoding metabolism-related mol-
ecules in small DP cells was not merely a result of exit from the cell 
cycle. When we simultaneously analyzed the expression of genes in the 
metabolism and proliferation-related gene-ontology categories across 
the entire ImmGen data set, many populations had the expected ‘low 
proliferation’ phenotype, but very few had the ‘low metabolism’ sig-
nature (Fig. 4a). Cell types that shut down their metabolism-related 
transcriptome to an extent similar to that of small DP cells included 
T cells at the contraction phase of the immune response, neutrophils, 
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microglia and red pulp macrophages (Fig. 4a,b). Neutrophils, like 
small DP thymocytes, have a lifespan of several days and have dimin-
ished transcription and translation activities and few mitochondria60. 
Pre-B cells (fraction D) also underwent a similar shutdown of genes 
in the metabolism- and proliferation-related categories, although to 
a lesser extent (Fig. 4a), and like small DP cells, are on the cusp of an 
antigen receptor–controlled checkpoint. Given that huge numbers 
of cells in these subsets are destined to die because of their failure to 
express a ‘useful’ antigen receptor, acquisition of this ‘low metabolism 
state’ may be an adaptation that diminishes the energy cost of the 
inevitable waste in generating an adaptive immune system.

Studies have described c-Myc as a global amplifier of transcription61.  
Therefore, the considerable downregulation of Myc expression and par-
allel upregulation of genes encoding negative regulators of c-Myc at the 
small DP stage (Fig. 3d) suggested that the extent of the transcriptional 
shutdown may be even greater than surmised after normalization of 
microarray data, which assesses only relative amounts of transcripts in 
a cell but can miss widespread variation62. To test that hypothesis, we 
quantified total RNA by analyzing pyronin Y staining by flow cytom-
etry (Fig. 4c). Small DP cells had less RNA than did their ‘neighboring’ 
subsets (DN, DP blast, CD4SP and CD8SP), in accord with a published 
report that detected 10% the amount of total RNA in small DP thymo-
cytes relative to that in DN4 cells63. We also assessed actual transcription 
by incorporation of the uracil analog eU (5-ethynyl uridine; Fig. 4d). 
An abrupt decrease in de novo RNA synthesis occurred at the small DP 
stage and was thus a major contributor to the transcriptional shutdown 
observed in small DP cells. Together these data indicated that RNA 
transcription was globally suppressed at the small DP stage and that 
genes encoding molecules associated with metabolic and housekeeping 
activities were disproportionally affected during this shutdown.

CD69+ DP thymocyte: crossroad of multiple fates
Small DP cells ‘audition’ for positive selection by scanning for self 
peptide–MHC interactions with their newly rearranged αβTCR64. 
DP thymocytes that receive a TCR signal after engagement of peptide-
MHC upregulate expression of the activation marker CD69 (ref. 65). 
The transition from small DP thymocyte to CD69+ DP thymocyte 
was associated with the second greatest change in the transcriptome 
throughout thymocyte differentiation. Accordingly, side-by-side com-
parison of the gene-expression profiles of CD69+ DP thymocytes and 
small DP thymocytes showed a large number of genes with differ-
ent expression (Fig. 5a). As expected, a major part of the program 
induced in CD69+ DP thymocytes affected transcripts induced early 
in TCR activation, as shown by the distinct partitioning of the signa-
ture genes characterizing TCR-stimulated DP thymocytes (Fig. 5a). 
Most of those TCR-related genes (75% of the upregulated signature 
genes) were not DP specific, as they were shared with other examples 
of TCR signaling, in particular in peripheral T cells (data not shown), 
and thus belonged to ‘generic’ branches of TCR-controlled gene net-
works. Accordingly, a large number of immediate-early-response 
genes and genes encoding canonical TCR transcriptional regulators 
(including members of the NFAT, NF-κB, EGR, Fos, Rel and NUR77 
families) were among the upregulated signature genes (Fig. 5a).

Analysis of genes encoding transcriptional regulators that were not 
part of this signature (Fig. 5b) identified genes encoding molecules with 
possible functions in thymic positive selection. For example, the genes 
encoding the inhibitory molecules Id2 and Id3, proposed to relieve the 
differentiation blockade enforced at the DP stage by E proteins66–68, were 
upregulated substantially in CD69+ DP thymocytes. Symmetrically, tran-
scription of Tcf12 (which encodes the transcriptional regulator HEB) 
was downregulated substantially (Fig. 5b and Supplementary Fig. 1). 

Another hallmark of positive selection was the fourfold upregulation of 
Nlrc5, which encodes an MHC class I transactivator69 (Fig. 5b). Although 
expression of MHC class I molecules was considerably impaired in Nlrc5-
deficient mice, the increase after positive selection was largely parallel 
in wild-type and Nlrc5-deficient mice (Fig. 5c), which indicated that 
other factors modulate MHC class I expression at this step. Many of the 
other transcriptional regulators have no reported function in thymic 
differentiation and warrant future exploration (Fig. 5b).

Gene ontology and manual curation of the fraction of the transcrip-
tome of CD69+ DP thymocytes that was not part of the ‘generic’ TCR-
activation signature identified several other functional categories that 
were highly represented (Supplementary Fig. 6 and Supplementary 
Table 3). In particular, the ‘metabolic’ category represented 11% of 
the induced genes, with genes encoding molecules involved in several 
major biosynthetic and oxidative pathways. The tricarboxylic acid 
cycle emerged as a critical metabolic hub in the transition from small 
DP thymocyte to CD69+ DP thymocyte, with concerted transcriptional 
regulation of key regulators of the pyruvate dehydrogenase complex. 
CD69+ DP thymocytes downregulated genes (Pdk1 and Pdk2) encod-
ing two of the most active pyruvate dehydrogenase kinase isozymes, 
which catalyze the phosphorylation and inactivation of the pyruvate 
dehydrogenase complex, and simultaneously increased expression of 
genes (Pdp1 and Pdp2) encoding phosphatases that catalyze the oppo-
site reaction (Fig. 5d). In addition to that coordinated regulation of 
Pdk1 and Pdk2 with that of Pdp1 and Pdp2 (which is also observed in 
starving cells70), CD69+ DP thymocytes reactivated the upstream gly-
colytic pathway (Fig. 5d), with upregulation of Pgam1 (which encodes 
the most abundant 3-phosphoglycerate mutase in thymocytes) and 
downregulation of Pgm2l1 (which encodes glu-1,6-biP synthase, whose 
reaction product negatively regulates hexokinase isozymes)71.

The metabolic switch noted above was also associated with the  
reactivation of other cellular housekeeping activities, which together 
composed almost 30% of the upregulated transcriptome that was 
not part of the early TCR-activation signature. These included genes 
encoding molecules involved in the restoration of active protein syn-
thesis (10% of upregulated genes); nucleocytoplasmic transport (2% of 
upregulated genes); and cytoskeleton-based motility (6% of upregulated 
genes; Supplementary Fig. 6 and Supplementary Table 3). One exam-
ple was the upregulation of genes encoding 20 ribosome structural pro-
teins and key regulators of translation, such as the ribosomal S6 kinase 
(Rps6ka1; Fig. 5e). Notably, for most of the genes in these categories, 
the upregulation was only partial at the CD69+ DP stage (Fig. 5e) and 
was completed only by the mature SP stages. Such stepwise reactivation 
was also reflected in cellular RNA content, as well as transcriptional 
rates, which increased only gradually during the differentiation of DP 
thymocytes into mature SP cells (Fig. 4c,d). Therefore, rather than a 
simple shift in the balance of pro- and antiapoptotic factors, the CD69+ 
DP stage was characterized by the reactivation of most cellular house-
keeping functions downregulated at the small DP stage.

Is there evidence of negative selection in the transcriptome of 
CD69+ DP thymocytes? Although it is generally accepted that expres-
sion of CD69 identifies DP thymocytes recently engaged in posi-
tively selecting TCR-peptide-MHC interactions3,65, it is not clear 
which (if any) fraction of CD69+ DP thymocytes triggered via the 
TCR is doomed to die after engagement of the TCR with negatively 
selecting peptide-MHC ligands72–77. To address this question, we 
highlighted those genes that have been reproducibly associated with 
negative selection in TCR-transgenic models (Nr4a1 (which encodes 
NUR77), Bcl2l11 (which encodes Bim), Pdcd1 (which encodes PD-1)  
and Gadd45b (which encodes GADD45B)29,30,78) on a volcano 
plot comparing the CD69+ DP stage and small DP stage (Fig. 6a).  
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These genes were induced substantially in CD69+ DP thymocytes, 
which suggested that negative selection may indeed have a substantial 
‘footprint’ on the transcriptome of CD69+ DP thymocytes.

To determine whether we could distinguish positive and negative 
selection at the transcriptional level, we next compared the tran-
scriptomes of CD69+ DP thymocytes and CD4+CD8int (intermedi-
ate CD4SP) thymocytes, which correspond to the earliest positively 
selected cell population that ultimately gives rise to both CD4+ and 
CD8+ lineages7 (Fig. 6b). As expected, most genes upregulated in 

CD69+ DP thymocytes had similar expression in CD4+CD8int cells 
(for example, Cd53, Bcl2 and H2-K1), which confirmed that positive 
selection was a major contributor to the transcriptome of CD69+ DP 
thymocytes. However, a subset of the genes upregulated had higher 
expression in CD69+ DP thymocytes than in intermediate CD4SP 
thymocytes (for example, Nr4a1, Gadd45b, Pdcd1 and Bcl2l11) or vice 
versa (for example, Nlrc5, Il7r and Gimap3-Gimap4). This divergence 
of the transcriptional profiles suggested putative markers associated 
with positive and negative selection.
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Figure 5  Reactivation of  
housekeeping activities after  
positive selection. (a) Change  
in gene expression (horizontal  
axis) and P values (t-test; vertical  
axis) in CD69+ DP thymocytes  
(DP69+) versus small DP thymocytes  
(DPsm), presented as a volcano plot. Colors indicate signature genes of TCR-stimulated DP thymocytes (derived  
from a published transcriptome analysis of BDC2.5 DP thymocytes30) that were induced (violet) or repressed (cyan),  
with a ‘fold change’ threshold of 2, at 3 h or 7 h relative to their expression untreated cells after in vitro stimulation  
with mimotope-pulsed splenic APCs; orange indicates immediate-early-response genes (derived from transcriptome analysis of a cell line stimulated with 
platelet-derived growth factor85). Numbers in top corners indicate the number of signature genes of the upregulated (violet) and downregulated (cyan) 
activation signatures in the induced (right) or repressed (left) quadrants. (b) Gene probes remaining after filtering-out of genes whose expression changed 
after TCR stimulation among DP signature genes (shown in a); colors indicate upregulated (violet) and downregulated (cyan) transcriptional regulators 
(among 1,680 known or putative transcriptional regulators, Supplementary Table 4). (c) Expression of MHC class I (MHCI) on various thymocyte subsets 
(horizontal axis) from Nlrc5-sufficient mice (Nlrc5+/+) and Nlrc5-deficient mice (Nlrc5−/−), detected by flow cytometry with anti–H2-Kb or anti–H2-Db (key) 
and presented relative to expression in small DP thymocytes. (d) Expression (maximum-normalized mean) of eight metabolism-related transcripts regulated 
at the transition from small DP thymocyte to CD69+ DP thymocyte (left), whose products control key steps of the glycolytic and tricarboxylic acid (TCA) 
cycle pathways (right). Glu, glucose; P, phosphate; G, glycerate; Pyr, pyruvate; PDH, pyruvate dehydrogenase; HK, hexokinase. (e) Expression (maximum-
normalized mean) of 20 genes encoding ribosomes and translation-related proteins regulated at the transition from small DP thymocyte to CD69+ DP 
thymocyte. Genes encoding structural ribosomal proteins: Rpl3, Rpl37, Rpl38, Rpl39, Rplp1, Rps12, Rps20, Rps25, Rps28, Rps29, Rrp15 and Rpsa.
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We thus explored the expression of some of those markers by flow 
cytometry to determine whether a subset of CD69+ DP thymocytes 
was associated with apoptosis. The combined use of antibodies to 
MHC class I (upregulation of which was one transcriptional hall-
mark of positively selected cells observed in Fig. 6b; for example, 
H2-K1) and anti-CD69 subcategorized thymocytes into five distinct 
subpopulations (gating strategy, Supplementary Fig. 7). We were 
able to discern two distinct phenotypes for the CD69hiMHCI− thy-
mocyte fraction (Fig. 6c). The CD4dullCD8dull subset contained a 
large proportion of cells with high expression of NR4A1, PD-1 and 
Helios (encoded by Ikzf2) and little or no Bcl-2 or IL-7R (Fig. 6d). 
In contrast, the CD4+CD8int subset had exactly opposite expression 
patterns for these markers (Fig. 6d). These results suggested that the 
CD4dullCD8dullCD69hiMHCI− subset was enriched for cells at an early 
stage of deletion by apoptosis.

To test that hypothesis, we analyzed the activation of caspase-3 
(Fig. 6e). Notably, the CD4dullCD8dull population had a singularly 

high frequency of cells positive for activated caspase-3 (up to 3%), 
even when compared with immature SP populations, known to be 
sensitive to clonal deletion (Fig. 6e and Supplementary Fig. 7). 
Cells positive for activated caspase-3 in the CD4dullCD8dull popu-
lation included CD69− cells and CD69hi cells, which were much  
less abundant in mice doubly deficient in MHC class I and MHC class II  
(1–10% as many) and in Bim-deficient mice (25% as many) than in 
their wild-type counterparts (Fig. 6e,f). These results identified a DP 
thymocyte subset in unmanipulated mice that underwent cell death 
in an MHC- and Bim-dependent manner, which is characteristic of 
true clonal deletion. Small DP cell populations also contained a sub-
stantial proportion of CD69− cells positive for activated caspase-3  
that, in contrast to the CD4dullCD8dull population, was larger in  
the absence of MHC class I and II (Fig. 6f); this probably identified 
cells that died by ‘neglect’. Together these observations showed an 
unexpectedly large deletional program in the polyclonal repertoire 
of DP thymocytes.
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Differentiation of CD4+ and CD8+ lineages
The results presented above indicated that the CD69+ DP subset 
was a heterogeneous population, with only a fraction of the cells 
differentiating from the DP stage to the SP stage. That differentia-
tion event had one of the largest changes observed during thymo-
cyte differentiation, with variations in the expression of more than 
2,600 gene probes (Fig. 1e and Fig. 7a). Despite the scale of this 
transcriptome shift, most of the changes were common for both 
the CD4+ lineage and the CD8+ lineage (approximately 93%), with 
unexpectedly few genes having a difference in expression (Fig. 7a). 
Among those, Cd40l (which encodes the ligand for the costimulatory 
receptor CD40) and Tnfrsf4 (which encodes the cell-survival factor 
OX40) were specifically upregulated in the CD4+ lineage, whereas 
Crtam and Cd226, which encode molecules associated with gran-
ule- and interferon-γ-mediated cytotoxic functions79, had higher 
expression in the CD8+ lineage. Correspondingly, very few genes 
encoding transcriptional regulators had different expression; these 
were exemplified by the well-described Zbtb7b (which encodes  
Th-POK) and Gata3 for the CD4+ lineage and Runx3 and Eomes 
for the CD8+ lineage80 (Fig. 7b). Thus, the CD4+ and CD8+ line-
ages were distinguished by unexpectedly few transcriptional marks  
during thymocyte differentiation.

Egress from the thymus is coupled with a phase of functional 
maturation23. To test the hypothesis that this maturation phase 
could reinforce lineage identities and further demarcate their tran-
scriptomes, we compared thymic and peripheral T cells (Fig. 8a). 
Unexpectedly, we observed little evidence of such a maturation 
process at the transcriptional level. Most of the downregulated genes 
were related to the cell cycle, which probably reflected the small 
fraction of proliferating mature SP thymocytes81. Only 12 genes 
had significant upregulation during the ‘migration’ from mature  
T cells to peripheral  counterparts  (at a ‘fold change’ threshold of 2; 
Fig. 8a). One of these genes was Cd55, whose product deactivates 
complement C3 convertases and protects cells from the lytic action 
of complement, whereas the function of the molecules encoded by 
another, Dapl1, is unknown in T cells. The upregulation of these 
genes after thymic egress was similar in the CD4+ and CD8+ lineages 

(Fig. 8a). Finally, a small subset of genes selectively downregulated  
in peripheral CD4+ T cells reflected the inclusion of regulatory  
T cells in the thymic CD4+ subset but not the lymph node CD4+ 
subset. These observations demonstrated that egress from the thymus 
had limited transcriptional consequences, with no reinforcement of 
CD4+ or CD8+ lineage identity.

What ultimately defines lineage identity in peripheral T cells? In 
line with the thymocyte profiling, direct comparison of peripheral 
CD4+ or CD8+ T cells identified few genes with different expression 
(159; ‘fold change’ >2; false-discovery rate, <10−4); most of these over-
lapped those detected before in thymocytes (Fig. 8b). A few encoded 
molecules associated with TCR signaling functions: Cd28, Trib2 
(which encodes a negative regulator of mitogen-activated protein 
kinases) and Mapk11 (which encodes the kinase p38β), for CD4+ 
cells; and Dpp4 (which encodes CD26) and Rnf125 (a positive regu-
lator of T cell activation), for CD8+ cells. Such limited divergence 
was unexpected, given the physiologically distinct functions of CD4+  
T cells and CD8+ T cells. We reasoned that these modest differences in 
the baseline transcriptomes might be amplified after activation and/or 
reflected in post-translational cascades during activation.

Therefore, we compared TCR signaling events in CD4+ or CD8+ 
T cells by multidimensional mass cytometry34. We stimulated sus-
pensions of lymph node cells with antibody to CD3 (anti-CD3) and 
anti-CD28 and assessed the phosphorylation status of 15 intracellular 
signaling molecules and the expression of 7 cell surface markers at 
15 time points. Despite our finding of slightly more phosphoryla-
tion in CD4+ T cells, most key TCR-proximal nodes (CD3ζ, Zap70, 
Lat and SLP-76) and downstream nodes (Erk1/2, S6, MAPKAPKII 
and NF-κB) had very similar dynamics of phosphorylation in CD4+  
T cells and CD8+ T cells (Fig. 8c), which mirrored the transcriptional 
similarity. We also isolated CD4+ or CD8+ peripheral T cells and 
stimulated them with anti-CD3 and anti-CD28 for gene-expression 
profiling. Reminiscent of maturation-induced changes in thymocytes, 
most activation-induced changes were shared by CD4+ cells and CD8+ 
cells (Fig. 8d). Nonetheless, some divergence in the transcriptional 
programs of CD4+ cells and CD8+ cells was evident as early as 1 h after 
stimulation via the TCR and, unexpectedly, included lineage-specific 
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downregulation of genes encoding the master transcriptional regula-
tors of each lineage (Zbtb7b, Gata3, Runx3 and Eomes; Fig. 8d).

The transcriptional divergence of CD4+ T cells and CD8+  
T cells increased over time (Fig. 8d). One example of this was Xcl1, 
whose product attracts dendritic cells and is crucial for an efficient  

cytotoxic response82. Other chemokine-encoding genes, such as Ccl3 
(MIP-1α) and Ccl4 (MIP-1β), as well as genes encoding molecules 
directly involved in CD8+ cell functions (Crtam and Gzmb), were 
also selectively regulated (Fig. 8d). Genes ‘preferentially’ expressed 
by CD4+ cells included Il2, Il2rb, Tnfsf4 (which encodes the ligand  
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for OX40) and Tnfrsf4 (which encodes OX40), among others. 
Therefore, the considerable similarity in the transcriptomes of the 
CD4+ and CD8+ lineages, acquired after positive selection, persisted 
through peripheral migration and was reflected in their signaling and 
transcriptional responses to TCR stimulation. This close transcrip-
tional similarity is in contrast to the present perception of their very 
different functions.

DISCUSSION
Our analysis of the entire transcriptional spectrum of thymocyte dif-
ferentiation states has provided several new insights. Dual control of 
Myc expression at the transcriptional and post-transcriptional levels 
(via downregulation of Mxi1, Sin3b and Trpc4ap) was apparent at the 
β-selection checkpoint and at the small DP–to–CD69+ DP transition, 
compatible with the idea that c-Myc constitutes the cellular ‘rheostat’ 
that enforces the programmed shutdown at the small DP stage and 
the reactivation of cellular functions after positive selection. Although 
the precise function of c-Myc at this stage remains to be investigated, 
several lines of evidence are in favor of this possibility. First, inhibi-
tion of c-Myc activity via overexpression of the c-Myc inhibitor MAD1 
leads to smaller SP thymocytes, as well as a lower proportion of CD3hi 
mature SP thymocytes59. Second, although no altered phenotype has 
been reported in mice with overexpression or deletion of Myc at the DP 
stage in polyclonal settings53,83, Myc overexpression in DP thymocytes 
from mice with transgenic expression of the MHC class I–restricted 
H-Y TCR leads to a greater positive selection efficiency83.

The expression of a complete αβTCR renders DP thymocytes eli-
gible for positive selection. Whether substantial negative selection 
also occurs at this stage in an unmanipulated, polyclonal setting has 
been a controversial issue. Our expression profiling has uncovered a 
program associated with apoptotic deletion in the early CD69+ DP 
subset, a consequence of their first TCR-peptide-MHC interactions. 
By tracking a variety of proteins identified through this transition, 
we were able to ascribe this program to a subset of CD69hiMHCI− DP 
thymocytes with activated caspase-3, which highlighted a substantial 
fraction of DP undergoing deletion. Further studies that take into 
account the dynamics of this process will be needed to more precisely 
quantify this early wave of cortical deletion relative to negative selec-
tion in the thymic medulla.

We have also provided here an important reference for T cell dis-
eases such leukemia, immunodeficiency and autoimmunity. Definition 
of the transcriptomes of each thymocyte subset allows more precise 
staging of malignancies or identification of how differentiation stalls 
in the context of transcriptional networks. For example, T cell acute 
lymphoblastic leukemia induced by deficiency in the transcription 
factor TCF-1 is in fact driven by dysregulation of the gene encoding 
the transcription factor Lef-1 (Lef1)84, which emphasizes the inter-
dependence of the transcription factors that drive early thymocyte 
differentiation. Furthermore, the definition of the normal dynamic 
of transcriptional regulation throughout thymocyte differentiation 
will enable the identification of the origins of network perturbations 
in disease-relevant models.

In conclusion, our comprehensive resolution of αβ T cell transcrip-
tomes through the entire course of their differentiation has yielded a 
unique perspective that colors somewhat differently the appreciation 
of differentiation events: the apparently gradual nature of commit-
ment to the T cell lineage, the deep shutdown of cortical DP thymo-
cytes followed by cellular reactivation after positive selection, and 
the ‘quasi-identity’ of CD4+ T cells and CD8+ T cells. We were able to 
take stock of the uncharted space across key transitions in thymocyte 
differentiation and highlight many notable candidate genes that were 

as-yet unexplored in T cells. Very few of the transcriptional regulators 
identified through the DP transitions have been analyzed thus far, 
whereas almost all of the (rare) transcription factors with different 
expression in CD4+ T cells versus CD8+ T cells have already been 
characterized. Thus, our analysis has defined the ‘known unknowns’ 
in αβT cell differentiation, and the challenge now is to integrate those 
with the known facts for a more complete view of T cell biology.

Methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. GEO: microarray data, GSE15907.

Note:  Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Mice. Male C57BL/6J mice 6 weeks of age (The Jackson Laboratory) were main-
tained in specific pathogen–free conditions (protocol 02954 of the Harvard 
Medical School Institutional Animal Care and Use Committee). Cells were 
obtained from mice within 1 week of arrival according to ImmGen standard 
operating protocol. Mice deficient in MHC or Bim have been described86.

Antibodies. The following monoclonal antibodies were used for flow cytom-
etry: monoclonal antibody (mAb) to CD19 (1D3), mAb to c-Kit (2B8), mAb 
to CD44 (IM7), mAb to CD25 (PC61), mAb to CD4 (RM4-5), mAb to TCRβ 
(H57-597), mAb to TCRγδ (GL3), mAb to CD11b (M1/70), mAb to CD11c 
(N418), mAb to -NK1.1 (PK136), mAb to Gr-1 (RB6-8C5), mAb to Ter-119 
(Ter-119), mAb to H-2Kb (AF6-88.5), mAb to H-2Db (KH95), mAb to CD69 
(H1.2F3), mAb to CD5 (53-7.3), mAb to CD279 (anti-PD-1; 29F.1A12; all 
from Biolegend); mAb to CD8α (53-6.7) and mAb to CD127 (A7R34; all from 
eBioscience); and mAb to Bcl-2 (BCL/10C4), mAb to IKZF2 (22.F6), mAb to 
NR4A1 (12.14), mAb to cleaved caspase-3 (5A1E), mAb to c-Myc (D84C12) 
and mAb to RPS6 (54D2; all from Cell Signaling). Primary conjugates of 
the following antibodies for mass cytometry were prepared and titrated as 
described87: mAb to CD4 (RMA4-5), mAb to CD8 (53-6.7) and mAb to CD5 
(53-7.3; all from Biolegend); mAb to Erk1/2 phosphorylated at Thr202 and 
Tyr204 (197G2), mAb to MAPKAPKII phosphorylated at Thr334 (27B7), 
rabbit polyclonal antibody to FAK phosphorylated at Tyr397 (3283), mAb to 
IκBα (L35A5), mAb to CREB phosphorylated at Ser133 (87G3) and mAb to 
4EBP1 phosphorylated at Thr37 and Thr46 (236B4; all from Cell Signaling); 
and mAb to CD19 (1D3), mAb to TCRβ (H57-597), mAb to CD25 (3C7), mAb 
to CD44 (IM7), mAb to CD3ζ phosphorylated at Tyr142 (K25-407.69), mAb 
to Zap70 phosphorylated at Tyr319 and Tyr352 (17a), mAb to Lat phosphor-
ylated at Tyr226 (J96-1238.58.93), mAb to SLP-76 phosphorylated at Tyr128 
(J141-668.36.58), mAb to c-Cbl phosphorylated at Tyr700 (47), mAb to S6 
phosphorylated at Ser 235 and Ser236 (N7-548), mAb to NF-κB phosphor-
ylated at Ser529 (K10-895.12-50) and mAb to Rb phosphorylated at Ser807 
and Ser811 (J112-906; all from BD Biosciences).

Flow cytometry and cell isolation. For surface staining, cells were incubated 
for 20 min at 4 °C with antibodies (identified above). For intracellular stain-
ing, cells were labeled with antibodies to surface markers (identified above), 
then were fixed and made permeable with Cytofix/Cytoperm and Perm/Wash 
buffers (BD Pharmingen). Cells were then stained for 30 min at 4 °C with 
antibodies diluted in Perm/Wash buffer. For intracellular detection of c-Myc, 
IKZF2, NR4A1 and Bcl-2, Foxp3 fixation and permeabilization solutions from 
eBioscience were used. An LSR II and FACSAria (BD) were used for multipa-
rameter analysis of stained cell suspensions, followed by analysis with FlowJo 
software (Tree Star). For cell sorting, cells were prepared according to the 
standardized ImmGen sorting protocol (http://www.immgen.org/Protocols/
ImmGen Cell prep and sorting SOP.pdf) with the appropriate antibodies 
(identified above). Cells were sorted on a FACSAria and FACSAria II (BD). 
The marker combinations used for the sorting of specific populations are 
available on the ImmGen website. For the isolation of DN thymocyte subpopu-
lations, total thymocytes were enriched for lineage-negative cells by staining 
of cell suspensions with biotinylated anti-CD4 (RM4-5), anti-CD8a (53-6.7), 
anti-TCRβ (H57-597), anti-TCRγδ (GL3), anti-CD11b (M1/70), anti-CD11c 
(N418), anti-NK1.1 (PK136), anti-Gr-1 (RB6-8C5) and anti-Ter-119 (TER-
119; all from Biolegend), followed by incubation with streptavidin-conjugated 
M-280 magnetic beads (Dynal/Invitrogen) and magnetic bead depletion of 
lineage-positive cells. Fluorochrome-conjugated streptavidin was added to 
the staining ‘cocktail’ and the remaining lineage-positive cells were gated  
out electronically.

RNA measurement. For pyronin Y staining, freshly isolated thymocytes were 
labeled with antibody conjugatesto cell surface proteins (antibodies identi-
fied above), then were washed and fixed in fixation/permeabilization reagent 
according to manufacturer’s instructions (BD Biosciences). Cells were washed 
in permeabilization/wash solution, then were stained for 10 min with 2.5 µg/ml 
DAPI (4,6-diamidino-2-phenylindole; Molecular Probes). Cells were washed 
and resuspended in 1 µg/ml pyronin Y (Sigma Aldrich) and incubated for  
10 min, then were acquired on an LSRII (BD) with linear scales for pyronin Y  

and DAPI channels. Transcriptional activity was measured in freshly isolated 
thymocytes during 2 h of incubation at 37 °C in presence of 5 mM eU. Cells 
were collected, stained for extracellular antigens (antibodies identified above) 
and then processed for eU detection by click chemistry according to manu-
facturer’s instructions (Invitrogen).

Cell stimulation. For gene-expression profiling of activated CD4+ T cells 
and CD8+ T cells, sorted naive CD4+ T cells and CD8+ T cells were cultured 
together with beads coated with anti-CD3 and anti-28 (cells/beads, 1:0.4; 
Dynabeads mouse T-activator; Dynal) and were collected at various time 
points after stimulation by cell sorting. For analysis of phosphorylation events 
by mass cytometry, total lymph node cells were stimulated in medium con-
taining 6 µg/ml of biotinylated anti-CD3ε (145-2C11; Biolegend) and anti-
CD28 (37.51; Biolegend) and were incubated for 2 min at 37 °C before the 
addition of 24 µg/ml streptavidin. At various times after crosslinking, cells 
were fixed by the addition of paraformaldehyde (final concentration 2%). 
PMA controls were fixed 3 min after the addition of 10 ng/ml PMA (phorbol 
12-myristate 13-acetate).

OP9-DL1 cultures and retroviral transduction. DN3 cells were gener-
ated from lineage-negative Sca1+c-Kit+ precursors isolated from Vav-Bcl2– 
transgenic mice, infected with retrovirus encoding IRES-GFP or mouse  
c-Myc–IRES–GFP, sorted, placed in secondary cultures with OP9-DL1 cells 
and analyzed as described14.

Microarray hybridization and analysis. An Affymetrix MoGene 1.0 ST array 
was used for RNA processing and microarray analysis according to ImmGen 
standard operating procedures.

Bioinformatics analysis. Hierarchical clustering, principal-component 
analysis and Euclidian distance calculation were done on log2-transformed 
mean-centered data sets filtered for expression values greater than 120 in 
any subsets and including only the 15% of probes with the highest variation 
across analyzed populations. Noisy probes (with an intra-population coef-
ficient of variation (CV) of >0.65, or 0.35 < intra-population CV <0.65 and 
interpopulation CV < 1 accros the αβ T cell ImmGen data set) were removed 
from all these analyses (463 probes were removed by these criteria, represent-
ing 1.8% of all probes). The Population PCA tool (http://cbdm.hms.harvard.
edu/LabMembersPges/SD.html) was used for principal-component analysis. 
The HierarchicalClustering module from the GenePattern genomic analysis 
platform was used for hierarchical clustering, with Euclidian distance, and 
hierarchical clustering visualized with the HierarchicalClusteringViewer 
module of GenePattern. The Euclidian distance heat map was created with 
the HeatMapImage module of GenePattern. K-means clustering was done 
on a data set that included LT-HSC, ST-HSC, MPP, ETP, ETP-DN2a, DN2a, 
DN2b, DN3a, DN3b, DN3b-DN4, ISP, DP blast and small DP populations with 
the ExpressCluster 1.3 tool (http://cbdm.hms.harvard.edu/LabMembersPges/
SD.html). Prefiltering on the probes that had expression values greater than 
120 in at least one subset and changed their expression fourfold or more-
between any of the populations was applied, resulting in the 2088 probes 
included in the analysis. Expression values were log2-transformed and mean-
centered. Euclidian distances were used as the distance metric. Probes within 
the resulting clusters were clustered with the HierarchicalClustering module 
for GenePattern with Euclidian distance as row distance and visualized with 
the HierarchicalClusteringImage module. The list of 2252 proliferation-related 
probes (‘proliferation signature’) was generated by merging of lists of all 
probes in the gene-ontology categories GO:0007049 (cell cycle), GO:0006259 
(DNA metabolic process), GO:0005813 (centrosome), GO:0005819 (spindle) 
and GO:0000776 (kinetochore), as well as probes that detect histones. The 
‘Proliferation’ index was calculated by averaging of row maximum normalized 
expression values for each probe in the proliferation signature. Likewise, the 
‘translation’ index was calculated by averaging of row maximum normalized 
expression values for each probe in the gene-ontology categories GO:0006412 
(translation) and GO:0005840 (ribosome). The DAVID bioinformatics data-
base (Database for Annotation, Visualization and Integrated Discovery)88,89 
and GOrilla gene-ontology enrichment analysis and visualization tool90,91 
were used for analysis of gene-ontology categories enrichment. TCR  

http://www.immgen.org/Protocols/ImmGen Cell prep and sorting SOP.pdf
http://www.immgen.org/Protocols/ImmGen Cell prep and sorting SOP.pdf
http://cbdm.hms.harvard.edu/LabMembersPges/SD.html
http://cbdm.hms.harvard.edu/LabMembersPges/SD.html
http://cbdm.hms.harvard.edu/LabMembersPges/SD.html
http://cbdm.hms.harvard.edu/LabMembersPges/SD.html
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signaling–related genes from K-means clusters were mapped to the KEGG 
(Kyoto encyclopedia of genes and genomes) pathway92,93 with the Functional 
Annotation tool of DAVID88,89.

Analysis of phosphorylation events by mass cytometry. Cells were stained 
according to published procedures87. Fixed cells were incubated for 45 min at 
room temperature with a mixture of antibodies to surface markers (identified  
above) =, then were washed and permeabilized in methanol for 20 min at  
4 °C. After the methanol was washed off, cells were stained for 45 min at room 
temperature with a mixture of antibodies to intracellular antigens (identified 
above), then were washed and then incubated for 20 min at room temperature 
in intercalator solution (paraformaldehyde 1.6% in 1× PBS), and then washed 
three times in double-distilled H20 before multidimensional mass cytometry 
on a CyTOF (DVS) as described87. Post-background substraction and normali-
zation Cytobank was used for analysis of data obtained by multidimensional 
mass cytometry.

86.	Bouillet, P. et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic 
responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286, 
1735–1738 (1999).

87.	Bendall, S.C. et al. Single-cell mass cytometry of differential immune and drug 
responses across a human hematopoietic continuum. Science 332, 687–696 
(2011).

88.	Huang, W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of 
large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 
(2009).

89.	Huang, W., Sherman, B.T. & Lempicki, R.A. Bioinformatics enrichment tools: paths 
toward the comprehensive functional analysis of large gene lists. Nucleic Acids 
Res. 37, 1–13 (2009).

90.	Eden, E., Lipson, D., Yogev, S. & Yakhini, Z. Discovering motifs in ranked lists of 
DNA sequences. PLOS Comput. Biol. 3, e39 (2007).
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In the version of this article initially published online, the eighth and ninth author names were incorrect. Those should be Matthew H. Spitzer and 
Garry P. Nolan. The error has been corrected for the print, PDF and HTML versions of this article.
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