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SUMMARY

Maintenanceof lymphoid homeostasis in a number of
immunological and inflammatory contexts is served
by a variety of regulatory T (Treg) cell subtypes and
depends on interaction of the transcription factor
FoxP3 with specific transcriptional cofactors. We
report that a commonly used insertional mutant of
FoxP3 (GFP-Foxp3) modified its molecular interac-
tions, blocking HIF-1a but increasing IRF4 interac-
tions. The transcriptional profile of these Treg cells
was subtly altered, with an overrepresentation of
IRF4-dependent transcripts. In keeping with IRF4-
dependent function of Treg cells to preferentially
suppress T cell help to B cells and Th2 and Th17
cell-type differentiation, GFP-FoxP3 mice showed
a divergent susceptibility to autoimmune disease:
protection against antibody-mediated arthritis in the
K/BxN model, but greater susceptibility to diabetes
on the NOD background. Thus, specific subfunctions
of Treg cells and the immune diseases they regulate
can be influenced by FoxP3’s molecular interactions,
which result in divergent immunoregulation.

INTRODUCTION

The transcription factor FoxP3 plays a central role in specifying

the differentiation and function of regulatory T (Treg) cells.

FoxP3+ Treg cells help maintain lymphoid homeostasis in a

number of immunological contexts: tolerance to self versus

autoimmune deviation, responses to pathogens or allergens,

and interactions with commensal microbes (Campbell and

Koch, 2011; Barnes and Powrie, 2009; Feuerer et al., 2009b).

The importance of FoxP3+ Treg cells is highlighted by the devas-

tating multiorgan inflammation of FoxP3-deficient scurfymice or

human IPEX patients (Ziegler, 2006). In addition, FoxP3+ Treg

cells partake in extraimmune regulatory activities, for instance

by dampening inflammation and metabolic activity in visceral

adipose tissue (Feuerer et al., 2009a).

Several pathways and molecular mediators of Treg cell

function have been described—some involving cell-cell interac-

tions, others soluble cytokines or small-molecule mediators

(Vignali et al., 2008; Shevach, 2009). Correspondingly, a number

of Treg cell subphenotypes exist, with differential effector func-
tions and tissue localization (Feuerer et al., 2009a; Feuerer

et al., 2010; Campbell and Koch, 2011). Although Treg cells

generally share a transcriptional program that distinguishes

them from conventional CD4+ (Tconv) cells, this program is

modified and tuned in relation to Treg cell function. For instance,

Treg cells in the adipose tissue express a set of transcripts

reflective of homing and adaptation to the adipose environment

and to the functions they exert there (Feuerer et al., 2009a and

data not shown). These programs appear to be determined in

Treg cells by the same transcription factors that are central to

the differentiated functions of the Tconv cells they regulate. For

instance, IRF4 is required for the differentiation of B cells and

of the T helper 2 (Th2)-type cells that help them, and the absence

of IRF4 in Treg cells impairs their ability to control Th2 cell

responses and antibody production (Zheng et al., 2009). Simi-

larly, Treg cells expressing T-bet or STAT3 transcription factors

optimally suppress inflammatory Th1 and Th17 cell responses,

respectively (Koch et al., 2009; Chaudhry et al., 2009).

Underscoring this specialization of Treg cell functionalities,

FoxP3 engages in a number of interactions with other transcrip-

tion factors (Xiao et al., 2010). Through its leucine zipper region,

FoxP3 can dimerize with itself or with other forkhead domain

proteins (Lopes et al., 2006; Li et al., 2007b) and can homodimer-

ize through the formation of a peculiar domain-swapped dimer of

the DNA-binding forkhead domain (Bandukwala et al., 2011).

FoxP3 interacts with the transcription factors Runx1, NF-AT,

Eos (encoded by Ikzf4), IRF4, RORgt, RORa, and phosphorylated

STAT3 (Ono et al., 2007; Wu et al., 2006; Pan et al., 2009; Zheng

et al., 2009; Zhou et al., 2008; Chaudhry et al., 2009). Several of

these interactions have been linked to a particular facet of the

Tregcell transcriptional profile; for instance, IRF4orSTAT3subtly

affect, alone or in combination with FoxP3, discrete segments of

the Treg cell signature (Zheng et al., 2009; Chaudhry et al., 2009).

This diversity of Treg cell subphenotypes and interacting fac-

ets of FoxP3 suggests that shifts in these interactions, occurring

physiologically or experimentally, should modulate the range of

Treg effector abilities. Here, we report such a situation, where

a modification of FoxP3 results in diametrically opposite effects

on the severity of different autoimmune diseases.

RESULTS

Divergent Autoimmune Phenotypes in Mice Carrying
the Foxp3fgfp Knockin
Our initial observations were made serendipitously in the course

of analyzing the role of FoxP3+ Treg cells in the K/BxN model of
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Figure 1. Foxp3fgfp Mice Exhibit Contrasting Phenotypes in Different Autoimmune Models

(A) Schematic representation of FoxP3, GFP-FoxP3, and FoxP3-I-GFP. Protein convertase cleavage sites (RXXR), proline-rich regions (Pxxp1 and Pxxp2), and

leucine zipper (Leu-zip) and forkhead (FKH) domains are represented.

(B) Arthritis clinical score and ankle measurements of 8-week-old K/BxN.Foxp3fgfp males, K/BxN.Foxp3fgfp/wt heterozygote females, and WT littermate

control mice.

(C) Anti-GPI IgG reactivity in sera of 8-week-old K/BxN.Foxp3fgfp males, K/BxN.Foxp3fgfp/wt females, and WT littermate control mice (mean ± SD, n = 6–8).

(D) Arthritis clinical score, ankle thickness, and anti-GPI antibodies in 8-week-old male and female K/BxN.Foxp3igfp and WT controls (mean ± SD, n = 6–8).

(E) Diabetes incidence curves of NOD.Foxp3fgfp males NOD.Foxp3fgfp/wt, females and littermate controls (10 mice/group). Two different cohorts of

NOD.Foxp3fgfp/wt heterozygous females were followed, in two different animal facilities.
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inflammatory arthritis. These mice carry the KRN transgene,

which encodes a T cell receptor (TCR) reactive against a peptide

from the ubiquitous enzyme, glucose-6-phosphate isomerase

(GPI), presented by the MHC class II molecule Ag7 (Kouskoff

et al., 1996). When the KRN transgene is crossed into an Ag7-

positive genetic background, autoreactive T cells promote the

massive production of anti-GPI IgG, which rapidly and spontane-

ously induce arthritis. They can also provoke arthritis after trans-

fer into normal recipients (Korganow et al., 1999). To help identify

Treg cells in arthritic mice, we introduced into K/BxN mice the

Foxp3gfp (Foxp3tm2Ayr) reporter knockin from Fontenot et al.

(2005), in which the eGFP coding region is inserted in-frame
2 Immunity 36, 1–11, May 25, 2012 ª2012 Elsevier Inc.
into the coding region of the Foxp3 locus on the X chromosome,

yielding a functional chimeric fusion protein with GFP inserted

between amino acids 5 and 6 of FoxP3 (Figure 1A; the locus

encoding this fusion protein will be referred to as Foxp3fgfp). It

is distinguished from the bicistronic ires-driven reporter

Foxp3igfp of Bettelli et al. (2006), in which GFP is not fused with

FoxP3 but is concomitantly expressed from a bicistronic

mRNA, leaving FoxP3 intact, and which was used as a control

throughout this study.

We noticed that the presence of the Foxp3fgfp reporter modi-

fied considerably the course of K/BxN arthritis. Males developed

no or very mild arthritis, as judged by both ankle thickening and



A

E F

B C D

Figure 2. Foxp3fgfp Disease Phenotype Does Not Correlate with an Alteration in Treg Cell Frequency

(A and B) Percentage of FoxP3-positive cells within CD4+ T cells.

(A) Spleens and draining lymph nodes (popliteal) of 8-week-old WT and K/BxN.Foxp3fgfp males (each point is an individual mouse).

(B) Spleen and pancreas of 9-week-old NOD.Foxp3fgfp males and controls.

(C) Proportion of FoxP3+ Treg cells among LN and visceral adipose tissue of 40-week-old B6 males.

(D) Representative dot plots showing the percent FoxP3+ Helios� Treg cells in colon lamina propria and spleen of 6-week-old B6.Foxp3fgfp and B6.Foxp3igfp

males.

(E) Splenocytes from K/BxN.Foxp3fgfp/wt heterozygote females were stained with CD3, CD4, and FoxP3 antibodies. Gates and values represent the fraction of

GFP-positive and -negative cells among FoxP3+ population. A summary of data in adjacent plot shows a fraction of GFP+ cells among FoxP3+ cells in the thymus,

spleen, and draining lymph nodes of K/BxN.Foxp3fgfp/wt females; the dashed line denotes the 50/50 ratio expected from random X-chromosome inactivation.

(F) Linear regression analysis of serum anti-GPI levels versus the fraction of GFP+ FoxP3+ Treg cells in K/BxN.Foxp3fgfp/wt heterozygote females.
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clinical index (Figure 1B). Protection in females was less

extreme, with a delay in disease onset (Figure S1A available

online) and variable severity. K/BxN.Foxp3fgfp males had low to

undetectable amounts of arthritogenic anti-GPI, in contrast to

serum of K/BxN littermates (Figure 1C). K/BxN.Foxp3fgfp hetero-

zygote females also showed a significant reduction in anti-GPI,

albeit less dramatic; these titers correlated well with arthritis

severity (Figure S1A). These data imply that protection from

arthritis in K/BxN.Foxp3fgfp mice stemmed from a block in auto-

antibody formation, suggesting an active suppression of the

immunologic phase of this model. This idea was further substan-

tiated by the fact that B6.Foxp3fgfp animals were sensitive to

arthritis induced by transfer of arthritogenic K/BxN serum (Fig-

ure S1B). To address the possibility that protection from arthritis

was simply due to GFP expression, we used the FoxP3-ires-GFP

reporter line (Bettelli et al., 2006). K/BxN.Foxp3igfp mice devel-

oped anti-GPI and arthritis as usual (Figure 1D), ruling out this

interpretation.

Given this protection from arthritis, we next examined whether

mice expressing GFP-FoxP3 would also be protected from other

autoimmune diseases. Thus, the Foxp3fgfp knockin was back-

crossed for 12 generations to the NOD/Lt strain, the prototypical

model of autoimmune type-1 diabetes (T1D), and evaluated

through the course of diabetes. Surprisingly, the opposite result

was obtained: whereas male NOD mice are usually resistant to

diabetes, NOD.Foxp3fgfp males showed a very high incidence

of diabetes (Figure 1E). Similarly, NOD.Foxp3fgfp heterozygote

females exhibited an acceleration of diabetes, in two indepen-
dent cohorts; some animals became diabetic before 10 weeks

of age, which is never seen in our NOD colony.

Foxp3fgfp Treg Cells Impact Disease Independent of
Frequency
Because FoxP3 is exclusively expressed in Treg cells and condi-

tions their differentiation and maintenance, we first examined

whether differences in Treg cells between mice expressing

GFP-FoxP3 might account for the contrasting phenotypes in

the two autoimmune models. Flow cytometric analyses first

focused on male mice, in which the Foxp3fgfp phenotypes

were most obvious, and on the spleen, where most of the

anti-GPI of K/BxN mice are produced. No increase in the

fraction of FoxP3+ among CD4+ splenocytes was observed in

K/BxN.Foxp3fgfp relative to K/BxN male mice (Figure 2A), as

might have been expected from the suppression of disease.

Instead, there was a decrease in the frequency of Treg cells, in

mice expressing GFP-FoxP3, most significantly in the lymph no-

des. A similar trend to decreased Treg cell frequency was

observed in spleens of NOD.Foxp3fgfp mice; however, this

observation did not extend to the pancreas (Figure 2B). Thus,

the difference in disease severity imparted by Foxp3fgfp in these

two models does not correlate with altered proportions of Treg

cells in the key organs.

In view of the impact of the chimeric GFP-FoxP3 on distinct

Treg cell populations, we investigated whether other Treg cell

pools might be similarly affected. We have recently described

a particular population of FoxP3+CD4+ T cells that resides in
Immunity 36, 1–11, May 25, 2012 ª2012 Elsevier Inc. 3
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Figure 3. Decrease in Th17 Cells in K.BxN.Foxp3fgfp Mice Is Independent of Inherent Th17 Cell Differentiation Defect

(A) IL-17a-producing cells in spleen and small intestine lamina propria from 4- to 5-week old K/BxN and K/BxN.Foxp3fgfp male mice. Gates and values represent

fraction of IL-17a-positive cells in CD4 population. Data are summarized in adjacent graph. Data are representative of three independent experiments.

(B) In vitro Th17 and Treg cell differentiation of congenically marked naive cells from WT (CD45.1) and Foxp3fgfp (CD45.2) B6 mice. Data is representative of two

independent experiments.
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the abdominal adipose tissue, has a distinctive TCR repertoire

and transcriptional profile, and impacts metabolic parameters

(Feuerer et al., 2009a). In aged males, in which this population

is most abundant, mice expressing GFP-FoxP3 showed a

marked reduction in numbers of fat Treg cells (Figure 2C).

Another recently described Treg cell population is found in the

colonic mucosa, induced by exposure to components of the gut

microbiome, in a particular Clostridia species (Atarashi et al.,

2011). This population differs from Treg cells in secondary

lymphoid organs by not expressing the transcription factor

Helios (encoded by Ikzf2), which has been suggested to identify

thymus-derived Treg cells (Thornton et al., 2010), although the

correlation is probably not absolute (data not shown). We evalu-

ated the representation and Helios expression of FoxP3+ Treg

cells in the colonic lamina propria (LP) of B6.Foxp3fgfp males.

Significantly, more Foxp3fgfp Treg cells lacked Helios than did

Treg cells from B6.Foxp3igfp or unmodified B6 mice, but no

difference was observed in splenic Treg cells (Figure 2D). These

results suggest that there may be an increased conversion to

a Treg cell phenotype in the colon of Foxp3fgfp mice in response

to local microbiota.

In heterozygous female mice, we noted a significant imbal-

ance in the fraction of FoxP3+ cells expressing the Foxp3fgfp

knockin allele. Random X inactivation should result in equivalent

representation of Foxp3 alleles from both chromosomes, unless

one conferred a particular advantage or disadvantage to the

cells expressing it. This ratio of GFP+/GFP� among FoxP3+ cells

was skewed in splenic Treg cells of most K/BxN.Foxp3fgfp

females (Figure 2E), variably in individual mice, and ranging

down to 1:4 (Figure 2E). This disproportion was evident early in

differentiation of the Treg cell lineage in the thymus, probably re-

flecting a lower efficacy of selection. This thymic imbalance was

most evident in K/BxN.Foxp3fgfp females, perhaps because of

their self-reactive TCR, given that it was more discrete in non-

transgenic B6 and NOD females (data not shown). We used

this variability to our advantage by assessing whether there

was a relationship between percent Foxp3fgfp Treg cells and

anti-GPI titers. Indeed, anti-GPI titers were inversely correlated
4 Immunity 36, 1–11, May 25, 2012 ª2012 Elsevier Inc.
with the proportion of GFP+ cells among Treg cells in K/BxN

females (Figure 2F).

Thus, the GFP-FoxP3 protein seems to alter in opposite ways

the selection or stability of Treg cells that express it. But, whether

comparing males to females, or females with different allelic

inactivation, there is a strong correlation between the effect on

autoimmune disease and the representation of Treg cells ex-

pressing the GFP-FoxP3 protein, indicating that Foxp3fgfp Treg

cells are directly involved in altering the course of autoimmune

diseases described above.

Th17 Cells in K/BxN.Foxp3fgfp Mice
Th17 cells play a central role in K/BxN arthritis, most directly by

modulating the amounts of arthritogenic anti-GPI (Jacobs et al.,

2009; Wu et al., 2010). Given the low anti-GPI in K/BxN.Foxp3fgfp

mice, we assessed the Th17 cell population in these mice.

K/BxN.Foxp3fgfp male mice showed a significant decrease in

the frequency of Th17 cells in the small intestine lamina propria

(SI-LP) relative to control K/BxN.Foxp3igfp mice (Figure 3A).

Preliminary data from NOD.Foxp3fgfp mice follow a similar trend.

This difference could be due to an intrinsic defect in Th17 cell

differentiation (conceivable given the notion that interactions

between FoxP3 and RORgt control the differential toward Th17

or iTreg cells [Zhou et al., 2008]) or to stronger suppression of

IL17 production by Treg cells expressing the GFP-FoxP3

protein. We tested the former by using an in vitro Th17 cell differ-

entiation system. To control for interwell variation or indirect

effects, we mixed congenically marked naive T cells from

B6.CD45.1 and B6.Foxp3fgfp (CD45.2) mice and cultured them

together under Th17 cell skewing conditions (Figure 3B). In

cultures lacking IL-6, FoxP3+ cells were similarly induced in

Foxp3fgfp or Foxp3wt cells (Figure 3B, left panels). IL-17-

producing cells were induced by IL-6 at similar frequencies in

Foxp3fgfp or Foxp3wt cells, at either concentration of TGF-b, indi-

cating that there is no intrinsic defect of Th17 cell differentiation.

We also searched for a Th cell bias in gene expression profiles of

unstimulated Tconv cells from NOD or B6.Foxp3fgfp. No bias in

typical Th1, Th2, or Th17 cell transcriptional signatures were
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Figure 4. Elevated FoxP3 Expression in Foxp3fgfp Treg Cells

(A) Anti-FoxP3 staining profiles of CD3+CD4+ cells from different organs of K/BxN.Foxp3fgfp male or WT littermates (shaded area is profile from isotype control).

Data are representative of three independent experiments.

(B) FoxP3 mean fluorescence intensity (MFI) of splenic Treg cells on three different backgrounds. Each dot represents an individual mouse, and values are

normalized to the mean FoxP3 MFI of WT mice in each experiment.

(C) FoxP3 MFI for LN and visceral fat from 40-week-old B6.Foxp3fgfp mice.

(D) Foxp3 mRNA levels in CD4+GFP+ splenic Treg cells from Foxp3fgfp or WT male mice on two different backgrounds.
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observed (Figure S2), indicating that the defective IL-17 induc-

tion is only revealed in challenged conditions, such as those of

the K/BxN LP.

Altered Characteristics of Foxp3fgfp Treg Cells
The impact of GFP-FoxP3 on differentiation of several Treg cell

compartments and the correlation between GFP-FoxP3 expres-

sion and autoimmune disease suggested that the chimeric

protein might modify particular regulatory aspects or phenotypic

characteristics in Treg cells, and thereby impact arthritis or dia-

betes progression. To elucidate these mechanistic underpin-

nings, we analyzed several aspects of Treg cell phenotype and

function.

The FoxP3 mean fluorescence intensity (MFI) was increased

by 2-fold in Foxp3fgfp Treg cells in K/BxN males (Figure 4A),

evident from early Treg cell differentiation in the thymus. This

increase was also present on the B6 and NOD genetic back-

grounds (Figure 4B) and was equivalent in males and females.

The FoxP3 chimeric protein was also overrepresented, to

a less marked degree, in Treg cells from visceral fat and in the

pancreatic infiltrate of NOD mice (Figure 4C). This overexpres-

sion of FoxP3 was not reflected at the mRNA level (Figure 4D),

suggesting that the increase in FoxP3 reflected an effect on

the stability of the protein, perhaps through different suscepti-

bility to posttranslational modifications. At any rate, it is clear

that the addition of GFP does not destabilize FoxP3.

We then tested the functional activity of Foxp3fgfp Treg cells. In

the conventional in vitro Treg cell suppression assay, Foxp3fgfp

Treg cells showed a small increase in suppressor activity (Fig-

ure 5A), consistent with the results of Fontenot et al. (2005),

who also observed a small shift. This difference was observed

only when responder T cells were activated in the presence of

irradiated antigen-presenting cells (APCs), given that direct

activation of responder T cells, with a plate-bound anti-CD3

antibodies or anti-CD3 and anti-CD28 conjugated beads, did

not reveal this enhanced suppression (data not shown). The

limited difference in suppressive activity in vitro was clearly not

sufficient to account for the divergent effects on the course of

arthritis and diabetes, which could be explained by modifica-

tions in the balance of different effector functions of Treg cells.

To test this hypothesis, we cultured naive T cells under Th1,
Th2, and Th17 cell-skewing conditions in the absence or pres-

ence of GFP-FoxP3 or IGFP-FoxP3 Treg cells. Transcripts of

the key indicator cytokines (Ifng, Il17a, and Il4) were quantitated

by RT-PCR so that specific Th cell-subset differentiation could

be determined. Expression of Ifng and Il4 were equally sup-

pressed by both GFP- and IGFP-FoxP3 Treg cells (Figure 5B),

but GFP-FoxP3 Treg cells were significantly more efficient at

blocking Th17 cell differentiation than their IGFP counterparts.

This greater efficiency may explain the decrease in SI-LP Th17

cells in K/BxN.Foxp3fgfp animals.

To further shed light on the differences between Foxp3fgfp and

WT Treg cells, we compared their transcriptional profiles on

gene expression microarrays. To properly compare Treg cell

populations, we sorted to high purity CD3+CD4+GFP+ (Treg)

and CD3+CD4+GFP� (Tconv) cells from both Foxp3fgfp and

Foxp3igfp mice. We performed this comparison on both the B6

and NOD inbred backgrounds to generate independent data

sets and to avoid potential confounders from the strong inflam-

matory alterations in the K/BxN context. The expression plots

of Figure 6A, which compare Treg and Tconv cells and highlight

the canonical Treg cell signature (Hill et al., 2007), give a broad

perspective and show that GFP+ cells in B6.Foxp3fgfp mice are

indeed Treg cells, with the usual complement of over- and under-

expressed transcripts, consistent with the results of Fontenot

et al. (2005). Next, we sought finer differences between Foxp3fgfp

and Foxp3igfp Treg cells by direct comparison of Treg cell

profiles in both strains (Figure 6B). Treg cells from Foxp3fgfp

and Foxp3igfp were very similar, with only 74–151 transcripts

overexpressed in Foxp3fgfp Treg cells at an arbitrary threshold

of 1.5-fold (for comparison, the experimental noise estimated

by Monte Carlo randomization and sampling randomization

was 60 and 197 hits, respectively, at the same threshold).

Many of the transcription factors that were key in establishing

the Treg cell signature were equivalently expressed (green dots

in Figure 6B). In contrast, 39 of these differential transcripts

showed a comparable deviation when the Foxp3fgfp versus

Foxp3igfp comparison was made on both the B6 and NOD back-

grounds, providing cross-confirmation from independent data

sets (only 6.54 overlaps on average in randomized data sets,

p < 10�4). Further substantiating the significance of these

discrete differences, Foxp3fgfp-differential transcripts were not
Immunity 36, 1–11, May 25, 2012 ª2012 Elsevier Inc. 5
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Figure 5. Enhanced Treg Cell Function Observed in Foxp3fgfp Treg Cells

(A) In vitro suppressive ability of CD4+CD25+ Treg cells from B6.Foxp3fgfp or WT littermates, titrated at different ratios in cocultures with CD4+ Tconv responder

cells and APCs. Data represent mean proliferation ± SD of three independent experiments.

(B) Th17 cell differentiation suppressed by GFP-FoxP3 (FGFP) and FoxP3-ires-GFP (IGFP) Treg cells. Ifng, Il17a, and Il4mRNA expression levels were assessed

by quantitative RT-PCR.
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a random assortment of transcripts but included a number of

genes of established relevance to Treg cells (Figure 6C): effector

molecules (Il10, Ctla4, and Fgl2), cell-surface receptors (Klrg1

and Icos), migration factors (Itgae, Ccr2, Ccr5, and Cxcr3), and

transcription factors (Prdm1, Maf, and Ahr). This signature

included several transcripts typically overexpressed in the

CD103+KLRG1+ Treg cell subset (Feuerer et al., 2010). These

differences in KLRG1, CD103, and CTLA4 expression were

confirmed by flow cytometry in Foxp3fgfp heterozygote K/BxN

and NOD females, which allow a direct comparison in the

same mouse of Treg cells expressing WT versus chimeric

FoxP3 (Figure 6D).

We then examined whether this differential representation

overlapped with any of the subsignatures that characterize

Treg cell subphenotypes, in particular those linked to STAT3

and IRF4, which are associated with the ability of Treg cells to

control Th17 cell- and Th2 cell-related functions. We hypothe-

sized that the over-riding suppression of anti-GPI responses in

the arthritis model, or to the higher efficacy at suppressing

IL17 responses, might be due to one of these sub-signatures.

Using the IRF4- or STAT3-dependent gene-sets previously

defined in mutant Treg cells (Zheng et al., 2009; Chaudhry

et al., 2009), we observed no bias for STAT3-dependent tran-

scripts (data not shown) but there was a significant overrepre-

sentation of IRF4-dependent transcripts in Foxp3fgfp Treg cells,

on both B6 and NOD backgrounds (Figure 6E). Thus, Treg cells

expressing the chimeric FoxP3 do not show a skewing of the

entire Treg cell signature, but only a very focused bias, which

overlaps with the imprint of IRF4, previously associated with

the control of T helper activity and antibody production.

Altered Protein-Protein Interactions between GFP-
FoxP3 and Transcriptional Cofactors
This limited and focused effect of GFP-FoxP3 on the Treg cell

signature suggested that the insertion of eGFP into FoxP3 might

affect its physical interaction with some of its functional cofac-

tors. We thus performed coimmunoprecipitation experiments

with Treg cell extracts from Foxp3fgfp and matched control

littermates or Foxp3igfp mice. FoxP3 was immunoprecipitated

from nuclear lysates, and associated factors were detected by
6 Immunity 36, 1–11, May 25, 2012 ª2012 Elsevier Inc.
SDS-PAGE immunoblotting. We first tested the association of

FoxP3 with FoxP1, a heterodimer formation known to occur via

the leucine-zipper region (Lopes et al., 2006; Li et al., 2007b)

and thus presumably away from the GFP insertion site. Coimmu-

noprecipitation of FoxP1 was equivalent with both FoxP3 and

GFP-FoxP3 (Figure 7A), indicating that the overall structure of

GFP-FoxP3 was not grossly perturbed. In contrast, the interac-

tion with the transcription factor HIF1-a, recently suggested to

antagonize Treg cell differentiation by promoting FoxP3 protea-

somal degradation (Shi et al., 2011; Dang et al., 2011), was

almost completely abrogated in GFP-FoxP3 relative to WT

FoxP3 (Figure 7B); this loss of interaction may plausibly account

for the increased amount of FoxP3 protein observed (Figure 4A).

The interaction of FoxP3 with IRF4 was tested by coimmunopre-

cipitation with anti-IRF4, revealing a higher amount of FoxP3-

IRF4 complexes in Foxp3fgfp Treg cells relative to control cells

(Figure 7C), consistent with the overrepresentation of IRF4-

dependent gene transcripts. In the course of these experiments,

we also observed that IRF4 protein expression itself is higher in

Foxp3fgfp Treg cells (Figure 7D), which may contribute to the

elevated IRF4-GFP-FoxP3 interaction.

DISCUSSION

The observations reported here imply that perturbations in

Treg cell phenotype and functional characteristics can affect

autoimmune diseases in a diametrically opposite manner. These

can be traced to a discrete genomic signature, identifying

candidates for this biased function, and to perturbations in the

interaction between FoxP3 and transcriptional cofactors. These

results indicate that specific modifications of FoxP3 and of its

interactions may be at play during the unfolding of autoimmune

diseases and could serve as a basis for therapeutically modu-

lating Treg cell function in a qualitative manner.

From a practical standpoint, these results need to be taken

into consideration in the interpretation of some experiments

performed with the Foxp3fgfp line in recent years. Foxp3fgfp

reporter mice have been used by a large number of investigators

to track Treg cells. In some cases we would anticipate the

discrete phenotypic and transcriptional perturbations reported
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Figure 6. Biased Gene Expression in Foxp3fgfp Treg Cells

Gene expression profiles were generated by microarray of Treg and Tconv cells from B6.Foxp3fgfp males, with parallel profiling from B6.Foxp3igfp as a reference.

(A) Comparison of expression values in Treg versus Tconv splenocytes from Foxp3fgfp and Foxp3igfp B6 males. The canonical Treg cell signature is highlighted in

red (Treg cell-upregulated transcripts) and blue (Treg cell-downregulated transcripts).

(B) Comparison of expression values in Foxp3fgfp and control Foxp3igfp Treg splenocytes, on B6 and NOD backgrounds. Genes concordantly overexpressed in

Foxp3fgfp relative to Foxp3igfp in both backgrounds are highlighted in red. Transcription factor genes are represented in green.

(C) Heatmap representation of transcripts over-represented in Foxp3fgfp on both backgrounds.

(D) Flow cytometric confirmation of CTLA-4, CD103, and KLRG1 overexpression in CD4+FoxP3+ Treg cells from spleens of Foxp3fgfp heterozygote females, on

the K/BxN and NOD backgrounds. The values shown are the percent CD103 or KLRG1-positive cells within the GFP-positive or -negative fraction of Treg cells

(mean ± SD of eight mice).

(E) Overrepresentation of the IRF4 Treg cell signature: The ratio of expression in Foxp3fgfp versus Foxp3igfp of IRF4-responsive transcripts is shown (log2 scale) for

both B6 and NOD data sets. The p value is calculated with a c2 test for departure from a null hypothesis of random distribution.
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here to have little or no impact. On the other hand, the insertion

does have pleiotropic effects, given that it influences Treg cell

lineage commitment, FoxP3 expression, and the interaction

with several transcriptional cofactors. The GFP-FoxP3 chimera
might be expected to perturb experimental situations dependent

on particular facets of Teff cell responses and sensitive to

the variation in Treg cell subphenotypes, such as the NOD or

K/BxN autoimmune models analyzed here.
Immunity 36, 1–11, May 25, 2012 ª2012 Elsevier Inc. 7
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Figure 7. GFP-FoxP3 Differentially Binds Transcriptional Cofactors
(A) Association of FoxP3 with FoxP1 determined by coimmunoprecipitation. Anti-FoxP3 was used for immunoprecipitating FoxP3 from nuclear lysates of

CD4+CD25� Tconv or CD4+CD25+ Treg cells from B6.Foxp3fgfp or WT mice, and immunoblots were probed for FoxP1 (anti-FoxP3 as control).

(B) Nuclear lysates of B6.Foxp3fgfp and B6.Foxp3igfp CD25+ Treg cells were immunoprecipitated with anti-FoxP3 or control IgG and probed with anti-HIF1-a

(anti-FoxP3 and anti-b-actin as controls).

(C) Anti-IRF4 was used for immunoprecipitating IRF4 from nuclear lysates CD4+CD25+ Treg cells from B6.Foxp3fgfp or WT mice and immunoblotted for FoxP3.

(D) Immunoblot analysis of IRF4 from nuclear lysates of CD4+CD25+ Treg cells from B6.Foxp3fgfp or WT mice; three independent experiments are shown.
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From the standpoint of autoimmune diseases, the dichoto-

mous outcome is consistent with the different effector mecha-

nisms involved in NOD diabetes and K/BxN arthritis. Pathogen-

esis in the former case involves inflammatory infiltration of the

target organ directly by autoreactive Th1 cell-like T cells, and it

is independent of IL-4 (Wang et al., 1998; Katz et al., 1995;

Hung et al., 2005). Although the impact of IL-17 on NOD diabetes

has yet to be conclusively established, there are several indica-

tions that IL-17 is protective, as demonstrated in several reports

showing that mice with high amounts of IL-17 induced by

helminth infection, segmented filamentous bacteria (SFB) or

NADPH oxidase deficiency are protected from diabetes (Lau

et al., 2011; Nikoopour et al., 2010; Tse et al., 2010; Kriegel

et al., 2011). In the K/BxN model, in contrast, pathology is due

to overwhelming T cell help to B cells, in a process strongly

dependent on both IL-4 and IL-17 (Ohmura et al., 2005; Wu

et al., 2010). Treg cells in Foxp3fgfp mice are the genomic oppo-

site of IRF4-deficient Treg cells, which are primarily defective in

controlling Th2- or Th17-linked B cell responses, resulting in

a pathology dominated by uncontrolled production of autoreac-
8 Immunity 36, 1–11, May 25, 2012 ª2012 Elsevier Inc.
tive Ig (Zheng et al., 2009): the discrete signature whose expres-

sion was lost in the IRF4-deficient cells proved overexpressed in

Foxp3fgfp Treg cells. Correspondingly, the in vitro assay showed

an enhanced ability of Foxp3fgfp Treg cells to suppress IL-17

production, but not IL-4 (although the assay may have been

saturated). This heightened ability of Foxp3fgfp Treg cells to

suppress Th17 cell differentiation would translate as more effec-

tive suppression of anti-GPI autoantibodies and arthritis in vivo.

Onemight speculate that imbalances in the ability of Treg cells

to suppress different facets of effector cell responses may occur

naturally and are involved in the determinism of autoimmune

diseases. The consensus is that neither diabetes nor arthritis

patients have generic defects in Treg cell numbers or basic func-

tionality. However, more focused perturbations in their flavor of

suppressor activity may contribute to arthritis or diabetes

susceptibility, conferred by genetic variation or environmental

exposure.

There is an interesting parallel between the effects reported

here and those of gut-resident microbes. We have recently re-

ported that SFB enhance K/BxN arthritis but protect NOD mice



Immunity

Different Treg Cell Functions in Autoimmunity

Please cite this article in press as: Darce et al., An N-Terminal Mutation of the Foxp3 Transcription Factor Alleviates Arthritis but Exacerbates Diabetes,
Immunity (2012), doi:10.1016/j.immuni.2012.04.007
from diabetes (Wu et al., 2010; Kriegel et al., 2011), a mirror

image of the effect of GFP-FoxP3. In this vein, we have noticed

that the protection from arthritis conferred by Foxp3fgfp Treg cells

can be more or less marked in different animal facilities (less

dramatic in conditions where the disease is inherently more

severe). Variations in IL-17 may be the common link, but one

might speculate that SFB also acts by influencing Treg cell

subphenotypes.

Underlying these disease changes are the subtle but highly

evocative alterations detected in the transcriptome of Foxp3fgfp

Treg cells. Of particular interest is the strong overlap with the

IRF4-dependent gene set determined by Zheng et al. (2009).

This IRF4 gene signature includes several of the ‘‘usual

suspects’’ among effector molecules (CTLA4, TIGIT, ICOS, and

FGL2). It also includes transcription factors such as AHR,

BLIMP1 (encoded by Prdm1), and Maf, which control each other

aswell as some of the same targets (Apetoh et al., 2010;Marshall

et al., 2008). The IRF4-to-BLIMP1 connection has been previ-

ously noted as key elements of a genetic regulatory module in

B cell differentiation (Sciammas et al., 2011) and in Treg cells

(Cretney et al., 2011). Fittingly, we found a slight positive bias

of the BLIMP1 signature defined by Cretney et al. However,

this bias was less pronounced as that of the IRF4 signature,

and because Prdm1 transcripts are themselves elevated, the

inference is that the GFP-FoxP3 protein impacts on this regula-

tory module at the level of IRF4 or higher.

Underlying these genomic alterations, probably, are the

altered interactions of FoxP3 with its transcriptional partners,

as shown here and by Bettini et al. (2012). Modifying FoxP3 by

insertion of the 238 amino acids of GFP at the N-terminus might

be expected, by steric hindrance, to perturb physical interac-

tions occurring through N-terminal motifs of FoxP3 or in its 3D

vicinity, but not others involving distant domains or a different

face of the folded protein. The GFP insert has no effect on dimer-

ization with FoxP1, which occurs via leucine zipper domains,

some distance away from the N-terminus; correspondingly,

interaction with NF-AT via the FKHR domain (Wu et al., 2006)

is not affected. But interaction with HIF1-a (this work), Eos,

HDAC7, and TIP60 (Bettini et al., 2012) are reduced or abolished.

HIF1-a has recently been shown to directly bind FoxP3, resulting

in its proteasomal degradation, and thus affecting Treg cell

differentiation (Shi et al., 2011; Dang et al., 2011). This loss of

HIF1-a-FoxP3 interaction, plausibly due to steric hindrance

from the bulky domain of GFP, is consistent with the higher levels

of FoxP3 in FoxP3fgfp Treg cells.

How the GFP insert would enhance the interaction with IRF4 is

less immediately obvious. Some of this increased representation

may simply be due to the increased levels of IRF4 in the cell,

although this increase (20%–40% by densitometry) may not be

sufficient to account for the full increase in FoxP3-IRF4 complex.

A simple integrative interpretation is that HIF1-a and IRF4

partially compete for binding sites on FoxP3, with the inability

of GFP-FoxP3 to interact with HIF1-a facilitating IRF4 binding

(indeed, IRF4 and FoxP3 synergize to activate IRF4 transcription;

data not shown). Tripartite molecular interactions between

HIF1-a, IRF4, and FoxP3may also be involved (although interac-

tion between HIF1-a and IRF4 has not been reported, HIF1-a is

stabilized when bound to herpes-virus-derived viral IRF3, which

shares significant homology to cellular IRF4 [Shin et al., 2008]).
An alternative possibility is that posttranslational modifications

of FoxP3, mapping to the N-terminus or indirectly affected by

the presence of the GFP insertion, would condition FoxP3’s

interactions with IRF4. For instance, acetylation of the N-terminal

region of FoxP3 results from balanced HAT and HDAC activities

(Samanta et al., 2008; Li et al., 2007a). These would very likely be

affected by the neighboring insertion, thus indirectly affecting

IRF4 binding.

In summary, there is a strong connection between the different

facets of these analyses, linking enhanced FoxP3-IRF4 interac-

tions to higher expression of IRF4-dependent Treg cell genes,

then to stronger suppression of Th2 and Th17 cell-linked

functions and autoimmune disease. It will be important to posi-

tion these in the broader context of a molecular map of FoxP30s
interactions, but these results already open the way to investiga-

tions of FoxP3-related genomics in human patients and avenues

for therapeutic modulation.

EXPERIMENTAL PROCEDURES

Mice and Autoimmune Evaluation

Foxp3igfp mice were provided by V. Kuchroo. The Foxp3fgfp (aka Foxp3tm2Ayr)

trait was crossed for generating K/BxN.Foxp3fgfp, NOD/LtJ.Foxp3fgfp,

C57BL/6.Foxp3fgfp, mice (>8 generations on both backgrounds), which were

bred and maintained in SPF facilities at Harvard Medical School. Arthritis

scores, ankle thickness measurements, and determination of anti-GPI titers

were as described (Monach et al., 2008). Mice on the NOD background

were monitored biweekly for urine glucose, with confirmation of diabetes by

blood glucose determination; mice were considered diabetic with two consec-

utive readings of blood glucose > 250 mg/dL. All experiments were done with

protocols approved by HarvardMedical School’s Institutional Animal Care and

Use Committee (IACUC protocol 02954 and 3024).

Treg Cell Isolation from Nonlymphoid Tissue

For intestinal lamina propria analysis, mesenteric fat tissue was removed, and

the intestine was opened longitudinally, washed in ice-cold PBS, and cut into

1 cm pieces; both were incubated in 25 ml DMEM containing 5 mM EDTA,

0.145 mg/mL DTT for 40 min at 37�C at a rotation speed of 200 rpm. After

incubation, the epithelial cell layer was removed by vortexing and pass-

ing through a 100 mm cell strainer. The remaining intestinal pieces were

washed in PBS, cut into 1 mm2 pieces with scissors, and digested in 25 ml

of DMEM supplemented with 1 mg/mL Collagenase D (Roche), 0.15 mg/mL

DNase I (Sigma), and 200 ng/mL liberase TL (Roche), at 37�C for 20 min with

rotation (200 rpm), then vortexed for 1 min and passed through a 100 mm

cell strainer.

For Treg cells from visceral adipose tissue, blood was flushed from the

organs by perfusion of PBS through the portal vein and the heart ventricle,

and epididymal adipose tissue was removed, cut into small pieces, and

digested for 20 min at 37�C with collagenase type II (Sigma) in DMEM. Cell

suspensions were then filtered through a sieve, and the stromovascular

fraction was harvested by centrifugation.

In Vitro Suppression Assay

Sorted splenic Teff cells (CD4+GFP�) were cultured, with or without added

Treg cells, for 72 hr in RPMI 1640, 10% FCS, 2 mM L-glutamine, penicillin/

streptomycin at 2.5 3 105 cells/well in round-bottom 96-well plates, supple-

mented with 1 3 105 APCs and 1.5 mg/mL anti-CD3. Cell proliferation was

measured by incorporation of H3-thymidine (1 mCi added in the last 18 hr of

culture).

In Vitro Suppression of Th Cell Differentiation

Splenic naive T cells (CD4+CD25�CD44loCD62Lhi) from B6 mice were

sorted and cultured in complete culture medium at 1 3 105 cells/well in Th1

(anti-CD3/CD28 beads + 0.4 ng/mL of IL12), Th2 (anti-CD3/CD28 beads +

4 ng/mL Il4), or Th17 (anti-CD3/CD28 beads + IL6; 20 ng/mL and TGFb;
Immunity 36, 1–11, May 25, 2012 ª2012 Elsevier Inc. 9
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2 ng/mL) cell-skewing culture conditions in the presence or absence of

Foxp3fgfp or Foxp3igfp Treg cells at a 1:1 Teff/Treg ratio. After 66 hr in culture,

RNA was extracted from flow-sorted Teff cells (CD4+GFP�) for quantitative
rtPCR (TaqMan).

In Vitro Th17 and Treg Cell Differentiation Assay

Splenic naive T cells (CD4+CD25�CD62Lhi) from B6.CD45.1 or B6.Foxp3fgfp

(CD45.2) mice were purified by flow sorting and cocultured at a 1:1 ratio under

Th17 cell-skewing conditions: 1 3 106 cells re-suspended in complete

culture media and seeded into wells from 48 well plates coated with anti-

CD3 (2 mg/mL) and supplemented with soluble anti-CD28 (2 mg/mL), IL-6

(30 ng/mL) and TGFb (5 or 25 ng/mL). At 96 hr, cells were washed and cultured

at 37�C for 4 hr with 50 ng/ml phorbol 12-myristate 13-acetate (Sigma), 1 mM

ionomycin (Sigma), and BDGolgiPlug (1:1000 dilution), then analyzed for IL17a

and FoxP3 expression by flow cytometry after intracellular staining.

Microarray Analysis

Duplicate samples of Tconv (CD3+CD4+GFP�) and Treg (CD3+CD4+GFP+)

splenocytes were double-sorted to achieve > 99.0% purity, from 6 weeks

old male Foxp3fgfp and Foxp3igfp mice (B6 and NOD backgrounds). Cells

were collected directly into Trizol. RNA was labeled and hybridized to

Affymetrix Mouse Genome M1.0 ST microarrays. Raw data were back-

ground-corrected and normalized with the RMA algorithm in the GenePattern

software package (Heng and Painter, 2008). The cell populations analyzed

were generated in duplicate. Data were analyzed with the ‘‘Multiplot’’ or ‘‘Heat-

map’’ GenePattern modules.

Immunoprecipitation and Immunoblotting

Pooled spleen and LN lymphocytes of Foxp3fgfp, Foxp3igfp, or Foxp3wtB6mice

were magnetically purified with anti-CD25 antibodies and lysed on ice with

hypotonic solution (10 mm HEPES, 1.5 mM MgCl2, 10 mM KCl, and 0.05%

NP-40 like/IgePal Ca-630) supplemented with EDTA-free complete protease

inhibitors (Roche). Nuclear pellets were subsequently treated with nuclear lysis

buffer (20 mM HEPES, 300 mM NaCl, 20 mM KCl, EDTA-free complete

protease inhibitor cocktail) and MNase (Nuclease S7; Roche). Chromatin

digestion was stopped by adding EDTA to 5 mM, and post-nuclear superna-

tants were incubated with Protein-G Sepharose beads coupled to anti-

FoxP3 antibodies (FJK16, eBioscience; 10 mg/reaction) for 2 hr at 4�C with

constant rotation. Bound proteins were eluted by boiling, separated by SDS-

PAGE, and electro-transferred to PVDF. After blocking (2 hr in 5% milk/13

PBS 0.02% Tween20), blots were probed overnight with anti-FoxP3 (FJK16,

eBioscience), anti-HIF1a (Hif1alpha67, Novus Biologicals), and anti-FoxP1

(Cell Signaling). FoxP3-IRF4 cointeractions used the Nuclear complex co-IP

kit (Active Motif). Nuclear extract was immunoprecipitated with 2 mg goat

anti-IRF4 (Santa Cruz), captured on magnetic protein G beads, and Foxp3

was detected after SDS-PAGE and immunoblotting.
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