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Gene expression microarrays: glimpses of 
the immunological genome
Gordon Hyatt, Rachel Melamed, Richard Park, Reuben Seguritan, Catherine Laplace, Laurent Poirot, 
Silvia Zucchelli, Reinhard Obst, Michael Matos, Emily Venanzi, Ananda Goldrath, Linh Nguyen, John Luckey, 
Tetsuya Yamagata, Ann Herman, Jonathan Jacobs, Diane Mathis & Christophe Benoist

Successful microarray experimentation can generate enormous amounts of data, potentially very rich but also very 
unwieldy. Bold outlooks and new methods for data analysis and presentation should yield additional insight into the 
complexities of the immune system.

Microarray analyses of gene expression, 
because of the unprecedented breadth 

of the data they yield, hold unique promise 
for elucidation of the functional organiza-
tion of a collection of cell types, such as those 
that compose the immune system. Although 
‘blind’ to some aspects of cellular regulation, 

such as translational control or intracellular 
compartmentalization, the evaluation of 
steady-state amounts of coding mRNA pro-
vides a direct representation of transcrip-
tional and post-transcriptional regulation1,2. 
At present, microarrays have the capacity to 
represent all transcripts and splice variants, 
demonstrating the genome’s global activity. 
Thus, what constitutes the ‘immunological 
genome’ can be defined — the inventory of 
genes expressed in different immune system 
cells and the ways in which those transcripts 
are connected in regulatory networks and 
vary during differentiation and immune 
responses. To a large extent, immunologists 
have only begun to scratch the surface of 
what may be gleaned from microarray tech-
nology, in particular from meta-analyses that 
encompass the immune system as a whole. 
This is true for conventional protein-encod-
ing mRNA, and even more so for microRNA 
molecules, whose expression patterns and 
functional consequences are only begin-
ning to be explored3. Here we will review the 
applications of microarray analyses of gene 
expression as tools for exploring the structure 
and function of the immune system, with 
an emphasis on meta-analyses. We will not 
discuss applications for leukemia and lym-
phoma exploration and classification, which 
represents a field of its own4. We will empha-
size general conclusions about the immu-
nological genome and ‘flag’ new paths that 
merit further exploration. To demonstrate 
the principles discussed here, we introduce 
the ImmGen website, a new interactive tool 

that displays various aspects of gene expres-
sion in the immune system.

‘A versus B’
In the field of immunology, as elsewhere, micro-
arrays were initially applied to address focused 
and well defined issues to delineate the set of 
transcripts that distinguish ‘condition A’ from 
‘condition B’, in which transcripts distinguish 
two closely related cell types, developmental 
stages5–7 or functional states (such as memory, 
anergy or regulatory)6,8–10. Microarrays have 
also been used to compare transcriptional pro-
grams elicited by distinct stimuli, such as Toll-
like receptor ligands or cytokines11–13, or to 
explore the regulatory ‘imprint’ of a particular 
transcription factor14,15. In case-control for-
mats, the perturbations associated with specific 
immunological diseases have been explored by 
expression profiling12,16–18, with attempts to 
decipher key cellular or molecular pathways 
from disease-specific ‘signatures’.

Most of those studies succeeded in dem-
onstrating some of the molecular framework 
underlying the phenomena studied. There have 
also been ‘flops’; in several cases (including our 
lab!), the data did not yield the anticipated 
insight and resulted in little more than the 
dreaded ‘gene list’ from which no knowledge 
immediately emerged. Such a result may arise 
from a true absence of informative variation, 
from faulty experimental design or from timid 
data analysis. Too often, this analysis is limited 
to a ranked gene list based on wholly arbitrary 
cutoffs, from which one or a few ‘attractive’ 
genes at the ‘tail ends’ of the distribution are 
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culled for additional study. Confining micro-
array data to the generation of hypotheses has 
become the norm but can generate oversim-
plified interpretations and leaves behind much 
complex but valuable information about the 
system being investigated. In some contexts, 
gene expression profiles should be considered 
valid endpoints in themselves; for example, 
when the nature of the transcriptional signa-
ture demonstrates a facet of biological reality 
or provides a clear answer to an experimental 
question.

Expression compendia: the landscape
Microarrays have the ability to define the true 
range of genes active in cells of the immune sys-
tem, an essential ‘ground map’ of the genes that 
must be considered in understanding immune 
function. That definition is not entirely trivial, 
however. The total number of genes in mam-
malian genomes is still in question, although 
the number of remaining surprises may be 
limited19. Moreover, it is difficult to appreciate 
the exact contribution of signals from cross-
hybridizing transcripts in a profile (the ‘dirty 
secret’ of the microarray world). Finally, the 
range of defined populations and subpopula-
tions in the immune system quickly enters into 
the hundreds.

With those caveats, a few studies have 
attempted to address the range of gene expres-
sion in a substantial spectrum of immune 
cells20–22. The Novartis Symatlas project ana-
lyzed over 60 organs in both humans and mice, 
some of which corresponded to lymphoid tis-
sue or sorted cell populations23. The Genentech 
IRIS project24 and Joslin ImmGen project 
(http://www.immgen.org) grouped data from 
more than 20 purified immune cell populations 
from humans and mice, respectively. Overall, 
the picture that has emerged from those com-
pendia is that much of the genome is active 
in one or many types of immune system cells. 
Even with conservative thresholds, 67% of 
genes were assigned scores of having substan-
tial expression in at least one immune cell by 
both the ImmGen and Symatlas data groups. 
Those fractions may actually be an underes-
timate, as microarrays are fairly insensitive in 
detecting very low expression values. Thus, it 
seems that the immune system makes use of a 
large fraction of the genome’s potential. The 
corollary of this breadth is that relatively few 
genes are truly specific to the immune sys-
tem. Only 121 of 16,969 unique genes in the 
Symatlas data group were expressed exclusively 
in immune cells. Notably, those fractions are 
very similar to those obtained for organs of 
the nervous system (73.4% of genes expressed; 
only 136 exclusively neural). Transcripts whose 
immune specificity was only quantitative were 
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Figure 1  Differentiating cells by microarray analysis. (a,b) B lymphocytes and T lymphocytes, 
distinguished by flow cytometry (a) or gene expression profile (b). (c,d) Relative positioning 
of immune cells based on principal component analysis of their global expression profiles; 
the x and y coordinates of a given population on the plot derive from its coefficients for the 
first two principal components. In c, the ImmGen data group of immune populations (key) is 
complemented with data sets from muscle, liver or pancreatic islets (omitted in d for better 
visualization of the relationships between lymphoid populations). (e,f) Reference population plots. 
The genes that distinguish two reference populations are used to calculate ‘likeness’ indices. In 
e, ‘B cell genes’ were selected as those overexpressed in B cells (averaging profiles from splenic B 
cells and peritoneal B1B cells) relative to T cells (averaging profiles from CD4 and CD8 T cells). 
Expression values of ‘B cell genes’ and ‘T cell genes’ in experimental populations were normalized 
to the expression values of those genes in the reference populations and were averaged to yield 
the x and y coordinates of each experimental population. Populations abbereviated as in c. 
Details, Supplementary Note online. B.Sp, B lymphocytes, all, spleen; B1.per, B lymphocytes, 
peritoneum; NK.SpN, natural killer cells, spleen, nonobese diabetic; NK.Sp, natural killer cells, 
spleen; DC.LN, dendritic cells, lymph node; CD8 Nve, CD8+ naive cells, lymph node, OT-1-
transgenic; CD8.FT, CD8αβ single-positive cells, fetal thymic organ culture; CD8α.FT, CD8αα 
single-positive cells, fetal thymic organ culture; CD8.Mem, CD8+ memory cells, lymph node, OT-
1-transgenic; CD8.Act, CD8+ activated cells, lymph node, OT-1-transgenic; DPDel.FT, CD4+CD8+ 
double-positive cells, preapoptotic, fetal thymic organ culture, BDC2.5 TCR-transgenic; DP.FT, 
CD4+CD8+ double-positive cells, fetal thymic organ culture; CD4 Treg.LN, CD4+CD25+ Treg cells, 
mesenteric lymph node, BDC2.5 TCR-transgenic, nonobese diabetic; CD4 Treg.Pc, CD4+CD25+ 
Treg cells, pancreatic infiltrate, BDC2.5 TCR-transgenic, nonobese diabetic; CD4 Nve, CD4+ naive 
cells, lymph node; CD4 Act, CD4+ cells, partially activated, peripheral lymph node, BDC2.5 TCR-
transgenic; CD4 NKT, CD4+ NKT cells, spleen; CD4 Eff.Pc, CD4+ cells, pancreatic infiltrate, 
BDC2.5 TCR-transgenic, nonobese diabetic; MECb7hi.Th, medullary epithelial cells, B7hi, 
thymus; MECb7lo.Th, medullary epithelial cells, B7lo, thymus; AllSynFl, arthritic synovial fluid.
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somewhat more common. The IRIS study 
found 1,688 of 19,054 (8.8%) human genes to 
be ‘preferentially’ expressed in immune cells. 
A rarity of specific transcripts also applies in 
distinguishing between types of immune cells. 
Of the 67% of genes expressed in immune cells, 
most were detected in essentially all or shared 
between several immune cell types (36% and 
21%, respectively). Only a minority (9.5%) was 
expressed exclusively in a single immune cell 
type.

Thus, the microarray compendia portray 
expression profiles that are very broad, with 
little absolute specificity but much quantita-
tive tuning. Such a view contrasts with the 
disproportionate importance ascribed to 
cell type–specific genes in mental represen-
tations of immune cells, which stem from 
flow cytometry images obtained with chosen 
cell type–specific markers. The distinction 
between B lymphocytes and T lymphocytes 
seems very different with profiling by flow 
cytometry versus microarray (Fig. 1a,b), but 
the latter is probably a better reflection of real-
ity. Few of the CD markers are truly cell type 
specific, and it can be very difficult to identify 
markers unique to a given cellular phenotype 
(such as with the long quest for a marker truly 
specific for CD4+CD25+ regulatory T (Treg) 
cells before the identification of Foxp3). This 
‘wide breadth and little specificity’ distribu-
tion of transcripts is also compatible with clas-
sic RNA-DNA reassociation and subtractive 
hybridization experiments. It has been esti-

mated that 10,000-15,000 individual genes are 
expressed in a given cell, but that only 2% of 
transcripts differ qualitatively between B cells 
and T cells25,26.

Distinguishing immune cell types
If truly cell type–specific transcripts constitute 
a relatively minor part of a cell’s overall tran-
scriptional program, then the definition of a 
differentiated cell’s identity must also take into 
account the quantitative variations that affect 
shared transcripts. Indeed, analyses have shown 
that essentially all expressed genes have subtle 
variations between CD4+ and CD8+ T cells, 
reflecting regulatory fine-tuning ignored before 
because it was within the range of ‘experimen-
tal noise’. Therefore, it is important to analyze 
distinctions between immune cell types with a 
genome-wide perspective, rather than focus-
ing on a few differentially expressed transcripts. 
Mathematical dimensionality-reduction tools 
can be applied to such analyses and can gener-
ate plots in which each cell type is positioned to 
best reflect its integrated genome-wide profile 
relative to those of all other cells (Fig. 1c,d). 
When applied to the ImmGen data group and 
data sets from unrelated organs, the results 
of all hematopeoietic cells clustered tightly 
together, away from those of muscle, liver and 
pancreatic islets (Fig. 1c; no such patterns 
were obtained with control randomized data 
groups). The results from thymic medullary 
epithelial cells, which might be expected to 
be more like other epithelia, mapped closer to 

those of the cluster of cells of hematopoietic 
origin, suggesting that functional interactions 
with lymphocytes require the sharing of a par-
ticular range of transcripts and proteins (such 
as adhesion molecules) or that a cell’s location 
in an organ may modify the transcriptional 
patterns dictated by its developmental origin.

In the hematopoietic system, the same algo-
rithm generates groupings that fit well with 
what might be expected. All T cell types map 
to the same general area of the plot and all 
B cell subsets are also tightly grouped. Although 
immature DP thymocytes are distinct, there is 
little distance on the plot between subsets of 
mature CD4+ T cells (which does not negate the 
distinct differences between CD4+ T cell subsets 
demonstrated in more focused analyses of Treg 
cells or natural killer T (NKT) cells). That dis-
position is consistent with the idea that NKT 
cells are a close variant of conventional CD4+ 
T lymphocytes27, rather than an intermediate 
between T cells and natural killer cells, as their 
acronym would suggest. Overall, dendritic cells, 
natural killer cells and B cells are grouped in a 
distinct area on the plot (Fig 1d). That layout is 
somewhat unexpected, as it might be expected 
that results from B lymphocytes and T lympho-
cytes would cluster, or that natural killer cells 
would be most closely related to T cells, with 
which they share common precursors in the 
thymus, cytolytic activity and the expression 
of several activation markers28. In reference 
population analysis plots, in which each popu-
lation is positioned in the two-dimensional 
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Figure 2  Gene expression networks in the immune system. (a) Network of correlated expression in immune cells. Data represent genes whose expression profiles 
are most correlated with that of Plcg2 (center), in the 76 data sets of the ImmGen data, which includes all of the main cell types of the mouse immune system. 
The distance from the center is proportional to the tightness of the correlation, and the correlated genes are positioned according to shared GeneOntology 
identifiers, such that genes sharing identifiers are grouped in the same angular quadrants. Right, signal transduction pathways moving from the B cell receptor 
(BCR) toward Plcg2 (interactive display, http://www.immgen.org). (b) The MYC subnetwork identified during analysis of 336 data sets from human normal 
or leukemic B cells45. The ARACNe algorithm was used to identify the genes with regulatory connections to MYC, one of the most connected genes in the 
reconstructed B cell network. The size of each circle is proportional to the number of interactions in which each of the neighbor genes is itself involved.
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plane relative to its expression of a set of ‘ref-
erence genes’ that distinguish two reference 
populations29, B1 and B2 cells map closer to 
natural killer cells and dendritic cells than to 
the cluster of T cells (Fig. 1e,f) based on genes 
differentially expressed in B lymphocytes and T 
lymphocytes. The genomic similarity between 
B cells, natural killer cells and dendritic cells is 
also consistent with a SAGE (serial analysis of 
gene expression) tag analysis of human periph-
eral blood lymphocytes21 and with the existence 
of ‘natural killer–dendritic’ cells30. Thus, rela-
tionships between cell lineages based on these 
global expression patterns depart to some 
extent from classical views in which differen-
tiation potential, and hence gene expression 
capabilities, become progressively restricted at 
each lineage fork31. The picture obtained from 
these genome-wide analyses is more compatible 
with views arguing for considerable plasticity 
in lymphoid and myeloid cell differentiation32, 
with substantial overlap between the expression 
profiles of different lineages.

Modules, signatures and networks
The pattern of gene expression that defines 
a unique state of cellular differentiation and 
activation reflects an intricate network of 
regulatory interactions. Although a full grasp 
of this regulatory network remains remote, 
genome-scale expression data groups have the 
potential to unmask some aspects of the con-
nectivity in the network. These meta-analyses 
have created new virtual ‘objects’ (borrow-
ing from the semantics of computer science), 
such as modules, signatures or networks. These 
objects allow a reduction and organization of 
the bewildering complexity of the genome and 
its expression. They correspond to molecular 
and cellular realities but are not necessarily 
intuitive from immunologists’ usual perspec-
tive and require particular tools for analysis, 
representation and publication. 

Modules
The smallest of genomic’s new objects, a ‘mod-
ule’ is defined as a group of genes that form a 
regulatory unit, sharing regulatory controls 
that influence their expression33,34. A module 
typically includes genes of different functional 
categories. The definition of modules is intrin-
sic to the expression data, as generated by unsu-
pervised computational algorithms without a 
priori biological definition. The computational 
definition of such modules from gene expres-
sion compendia can also incorporate input from 
different data types (such as sequence motifs 
or protein-protein interactions). Biological rel-
evance is then inferred from the composition 
of the module (insight is generated from the 
realization that a module ‘makes sense’).

Signatures
Conceptually different from modules, ‘signa-
tures’ are sets of genes generated by comparison 
of transcriptional profiles in conditions that 
are defined from an a priori perceived biologi-
cal logic (a differentiated state or a response to 
a drug)35. The ‘Treg cell signature’ is the set of 
transcripts that distinguishes Foxp3+ Treg cells 
from conventional T cells, and the ‘interferon 
signature’ is the group of transcripts modified 
by interferon exposure10,12. Signatures are 
fluid and complex objects. Their boundaries 
and composition depend on nonpermanent 
elements that guide their definition (knowl-
edge in the field, investigator bias, composi-
tion of the data group and formulation of the 
query). The ‘plasma cell signature’ will vary 
with the type(s) of precursor B cells used as 
a reference. Moreover, signatures intersect 
and overlap considerably. For example, the 
Treg cell signature defined by comparison of 
naive CD4+ T cells and Treg cells10,36 contains 
genes that also belong to ‘T cell activation’, 
‘transforming growth factor-β’ and ‘plasma 
cell’ signatures. Furthermore, signatures are 
quantitative, rather than simply binary. This 
includes the direction of the transcriptional 
perturbation (for example, the Treg cell signa-
ture includes roughly equal numbers of genes 
that are under- and overexpressed relative to 
those of conventional CD4+ cells, but the for-
mer always receive much less attention) and 
the extent of differential expression. Indeed, 
akin to Sherlock Holmes’ silent hound, tran-
scripts whose abundance does not vary can 
be an important element of a signature (the 
absence of cell cycle genes is a key component 
of the signature of T cell anergy9). Finally, a 
signature can vary with the state or anatomical 
location of a population. For example, several 
transcripts of the Treg cell signature vary among 
Treg cell subsets or after infiltration into auto-
immune lesions10,37,38.

Signatures are the most intuitively useful 
objects for the immunologist. Yet because of 
the complexity and fluidity of signatures, algo-
rithms to analyze their composition, variation 
and overlap are only now emerging. Similarly, 
standardized formats for publishing (beyond 
the typical ‘supplementary gene list’) and 
sharing signatures are still limited. However, 
some databases of expression signatures that 
should be of immediate use to the community 
are emerging39 (http://www.immgen.org/
index_content.html, Population Signature).

Networks
‘Networks’ represent the highest level of inte-
gration, in which the ultimate aim is to link 
all genes and transcripts in the immunologi-
cal genome. Several distinct types of networks 

have been defined. In coexpression networks40, 
each gene is linked to the genes with which its 
expression is most closely correlated. In such 
a network, the modules described above are 
basically local density maxima of the network 
space. Sets of genes with correlated expression 
may denote a functional pathway or may indi-
cate regulation by the same transcriptional or 
mRNA (de)stabilization elements. Gene-gene 
correlations that are conserved across spe-
cies emphasize key functional pathways and 
genes40,41. Defining and demonstrating coreg-
ulation in the immune system should yield 
functional insight. Representing a genome-
wide network presents serious challenges, 
however, because of the scale and complexity 
of genome-wide networks. The interactive 
interface of the ImmGen site presents the genes 
most closely connected to a query gene. Each 
of these ‘connected’ genes can in turn be ‘inter-
rogated’ dynamically. Positioning of genes in 
a two-dimensional plane presents additional 
information, including the degree of corre-
lation, shared GeneOntology identifiers and 
chromosomal location. For example, correla-
tions with the B cell signaling molecule Plcg2 
emphasize protein kinases or adaptors, signal-
ing adaptors and transcription factors, which 
bear considerable similarity to the diagram of 
signaling pathways that converge on Plcg2 after 
B cell receptor triggering (many genes in Fig. 2, 
right, are found in the set of genes correlated 
with Plcg2).

Coexpression networks remain limited in 
that they cannot show true regulatory interac-
tions. In regulatory networks42, each gene is 
linked to the genes it controls or is controlled 
by. Underlying the construction of genome-
wide networks are the ideas that all regulatory 
controls are ultimately interconnected and that 
a given perturbation has local and predictable 
effects as well as consequences that are more 
distant and less intuitively obvious. These 
genomic networks share some structural and 
conceptual aspects with the ‘idiotypic networks’ 
of immunology’s past43. Specific computational 
tools, derived from applied mathematics (pat-
tern recognition, system dynamics and Bayesian 
networks) have been developed to ‘reverse-
engineer’ network structure and to predict 
‘regulator-regulated’ relationships44–47. These 
reverse-engineering approaches have proven 
powerful in microbial systems but face daunt-
ing challenges when faced with the larger mam-
malian genomes. All share the requirement for 
very large data groups (hundreds or thousands 
of data sets) in which discrete variation is the 
substrate used by the algorithms to predict reg-
ulatory connections between genes. Variation 
can be introduced through gene knock-
out, RNA interference ‘knockdown’, or drug 
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treatment, or by exploitation of natural genetic 
polymorphism through joint analysis of gene 
expression and genetic variation. Anchoring the 
reverse engineering of the expression network 
on underlying polymorphism makes for more 
robust analyses and demonstrates genetic asso-
ciation47–49. For immunology, the most demon-
strative study so far deciphered regulatory 
connectivity among normal and transformed 
human B cells using an algorithm based on 
‘mutual information’ techniques45. This showed 
that the regulatory network is not uniform but 
that a limited number of genes serve as ‘hubs’ 
of regulation, and account for most of the con-
nectivity (a typical ‘scale-free network’ in the 
terminology of network theory, analogous to 
networks of social interactions or airline traffic). 
As shown for MYC (Fig. 2b), many of a hub’s 
first neighbors are themselves large hubs, which 
suggests that a single gene can influence many 
cellular processes. That idea makes teleological 
sense, as the cell cycle triggering exerted by Myc 
requires profound changes in cell metabolism 
and biosynthesis.

Representation: impressionist microarrays
Immunologists in the ‘molecular biology 
decades’ have become accustomed to work-
ing in relative intellectual comfort, testing 
one (or a few) isolated variable(s) against 
the backdrop of a more nebulous whole sys-
tem. Experiments can be ‘read out’ visually 
by comparing the intensity of a few bands on 
a gel or of a few cell populations on a cytom-
etry profile. With the thousands of simulta-
neous variables provided by microarray and 
other systems-level analyses, this situation 
is radically changing. Because the human 
mind cannot grasp much more than a single 
page of data at one time, a new method of 
graphic representation is needed to present 
in a human-accessible form the character-
istics of genes, signatures and networks as 
they evolve in different cell or phenotypic 
states. It is from such projections that true 
knowledge can be gained.

The field of scientific visualization has 
used art analogies to display multiple facets 
of complex data50, some of which should be 

useful in displaying gene expression data. 
For instance, Impressionist painters of the 
pointillist school used the juxtaposition of 
multiple points of paint to generate com-
plex images. Signac’s painting incorpo-
rates a many such dots to create an image 
that ‘speaks’ to the viewer on several levels 
(Fig. 3a). It incorporates fine details, inte-
grates them in complex structures (such as a 
tree) and conveys the artist’s overall impres-
sion and emotion. Similar techniques can be 
used to compare the signatures of different 
states of CD4+ T cells, such as transcriptional 
programs elicited by engagement of differ-
ent T cell receptors or chronic activation, or 
the overlap between the Treg cell and con-
ventional T cell activation signatures (Fig. 
3b). Each point ‘color codes’ the expression 
of a gene, and their arrangement aims to 
bring out the swath of subsignatures that 
distinguish or connect the different states. 
In the ImmGen ‘GeneFamily’ representation 
(Fig. 3c), the constellation of transcrip-
tion factor genes is arrayed according to 
overall expression, showing members 
of particular subfamilies or genes that 
distinguish lineages.

Impressionists did not have web access. 
Like modern art, representations of complex 
signature and network structures can ben-
efit from incorporation of the dazzling capa-
bilities of electronic display, of interactive 
environments and of virtual reality. Also, the 
meta-analyses described here only hint at 
the more ambitious opportunities afforded 
by ‘systems immunology’. Gene expression 
networks will be connected to other types 
of ‘meta-data’, such as representations of the 
proteome and its modifications, genome-
wide analyses of chromatin structure and 
compartmentalization of transcripts and 
proteins in cells. In addition, genomic and 
proteomic data are mostly static, mainly rep-
resenting steady-state conditions in a cell. 
Systems-level understanding will require the 
integration of its dynamic and quantitative 
aspects, taking into account the complex 
thresholds and feedback loops that give the 
immune system its amazing discriminatory 
power51.

Note: Supplementary information is available on the 
Nature Immunology website.
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Figure 3  Complex data representations in art and immunogenomics. (a) Pine Tree by Paul 
Signac (1909; Pushkin Museum, Moscow). Inset, enlargement of boxed area at left. (b) Abstract 
representation of expression signatures in subsets of CD4+ T cells. Expression profiles of CD4+ T cell 
populations are compared with those of naive CD4+ cells, and the ‘fold change’ for each differentially 
expressed gene is presented as a dot in a classic heat map (underexpression, blue; overexpression, 
red). The genes are positioned similarly in each two-dimensional plot, which is optimized by 
multidimensional scaling such that the relative positions best reflect the correlation between the ‘fold 
changes’ for each condition10 (R.O. and L.N., unpublished data). Act, T cell receptor–transgenic 
T cells (AND or KRN) acutely activated by cognate antigen in vivo; KRN 5w, chronically activated KRN 
T cells. Acute activation of different T cell receptors elicits different activation responses, which are 
amplified in the chronically activated KRN T cells. Most genes overexpressed in Treg cells (red; far right) 
are repressed in activated KRN and AND cells, but a portion of the activation signature is upregulated 
in Treg cells. (c) Multidimensional scaling is used to calculate optimal positions for transcription factor 
genes, as a ‘best projection’ of the correlations of their expression across the ImmGen data group. 
This display names only those transcription factors that characterize a cell population (here, those 
overexpressed in B cells or T cells; interactive display, http://www.immgen.org).
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