Fas Deficiency Prevents Type 1 Diabetes by Inducing
Hyporesponsiveness in Islet 3-Cell—Reactive T-Cells
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Type 1 diabetes is an autoimmune disease wherein
autoreactive T-cells promote the specific destruction of
pancreatic islet 3-cells. Evidence for a crucial role for
Fas/FasL interactions in this destruction has been
highly controversial because of the pleiotropic effects of
Fas deficiency on the lymphoid and other systems.
Fas-deficient mice are protected from spontaneous de-
velopment of diabetes not because Fas has a role in the
destruction of B-cells, but rather because insulitis is
abrogated. Fas may somehow be involved in the series of
events provoking insulitis; for example, it may play a
role in the physiological wave of B-cell death believed to
result in the export of pancreatic antigens to the pan-
creatic lymph nodes and, thereby, to circulating, naive,
diabetogenic T-cells for the first time. To explore the
implication of Fas in these events, we crossed the Ipr
mutation into the BDC2.5 model of type 1 diabetes to
make it easier to monitor direct effects on the pathogenic
specificity. We demonstrated that BDC2.5/NOD?™?" mice
have qualitatively and quantitatively less aggressive insu-
litis than do BDC2.5/NOD mice. In vitro proliferation
assays showed that BDC2.5/NOD?™”P" splenocytes prolif-
erated less vigorously than those from control mice in the
presence of islet extracts, which reflects their inability to
produce interleukin-2, resulting in weaker pathogenicity.
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ype 1 diabetes is an autoimmune disease in
which the immune system specifically destroys
insulin-producing B-cells of the pancreatic islets
(1). A breakdown in the tolerance of T-cells
toward pancreatic autoantigens results in infiltration of
the islets by a cohort of lymphoid and other inflammatory
cells. T-cells have been shown to play a critical role in this
destruction (2,3), but the precise mechanisms involved
remain elusive. It is not clear, for example, whether 3-cells
are killed directly by cytotoxic effector T-cells, indirectly
by means such as cytokine secretion and/or activation of
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cytocidal activities in macrophages, or by a combination
of the two.

In this context, much attention has been paid to Fas/
FaslL-mediated cell death and to the possibility that the
triggering of “death-receptors” on [B-cells might be the
conduit for B-cell destruction. Engagement of the trimeric
Fas molecule (CD95) on the cell surface rapidly induces
cell death, the prototype of receptor-mediated apoptosis
induction (4). The original evidence that the Fas/FasL axis
might be involved in B-cell destruction came from the
observation that introducing a mutation specifying Fas
deficiency (the Ipr mutation) protected NOD mice from
diabetes development (5,6). Moreover, transfer of spleno-
cytes from diabetic NOD mice into NOD”"?" recipients
did not provoke diabetes, as it did in wild-type hosts (6).
FasL-deficient NOD?““"? mjce did not develop diabetes
either (7). Together, these findings suggest that the en-
gagement of Fas on B-cells by FasL on effector T-cells
might be a critical step in inducing B-cell death. On the
other hand, closer examination of the mutant animals has
revealed that insulitis is also abrogated in NOD”"#" mice
(6), implying that the lack of diabetes might not be due to
direct impairment of 3-cell killing, but rather to another
effect of the mutation on the lymphoid system. One such
possibility is that lymphocytes from Ipr/Ipr mice strongly
upregulate FasL (8), rendering them potent killers of any
cells displaying Fas (9). This might explain the inability of
transferred potentially diabetogenic lymphocytes to exert
their pathogenicity in NOD”””" mice. Indeed, this has
been shown to be the case (9,10). Furthermore, islets from
NOD?"®" mice were not protected from autoimmune
attack when transferred into diabetic wild-type recipients
(10), casting strong doubt on the earlier interpretations.

Nonetheless, debate persists on the true role of Fas/
FasL interactions in diabetogenesis. More recently, in vivo
treatment of mice with an anti-FasL antibody (11) or in
whom a dominant-negative Fas mutation has been intro-
duced (12) seems to suggest that Fas may contribute to the
early stages of the disease. On the other hand, inactivation
of the Fas gene, specifically in B-cells, has not prevented
disease in a model where T-cells expressing a transgene-
encoded T-cell receptor (TCR) specific for influenza hem-
agglutinin (HA) mediate diabetes in mice that express the
HA peptide in B-cells (13).

These data do not explain the initial observation of
diabetes prevention in NOD?"?" mice, which may still be
an important clue to understanding anti-islet autoimmu-
nity. Does the mutation prevent formation of the autore-
active T-cell repertoire? Does it interfere with T-cell
activation? We have recently shown that the ripple of
physiological B-cell death that occurs in the first weeks of
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life is an important initiator of islet antigen presentation to
T-cells (14); might Fas be involved in this process?

To address these questions, we analyzed the impact of
the Ipr mutation in the BDC2.5/NOD model, a derivative
carrying the rearranged TCR genes from a diabetogenic
T-cell clone derived from a diabetic NOD mouse. BDC2.5/
NOD mice harbor anti-islet T-cells at high frequency,
thereby greatly facilitating the examination of events that
modulate the activation and effector function of poten-
tially diabetogenic T-cells (15). We found that the Ipr
mutation affects the progression of autoimmunity in
BDC2.5/NOD mice, but that the mutation has an influence
on T- and not on B-cells.

RESEARCH DESIGN AND METHODS

BDC2.5 TCR transgenic mice have been previously described (15). The
BDC2.5/NOD mice used in these experiments have been backcrossed for more
than 30 generations onto the NOD genetic background. NOD”"* mice were
generated by backcrossing the Ipr mutation (a kind gift of Dr. A. Strasser and
Dr. J. Allison, The Walter and Eliza Hall Institute of Medical Research,
Melbourne, Australia) for >15 generations onto the NOD/Lt background,
followed by a cross to BDC2.5/NOD mice to introduce the BDC2.5 TCR
transgenes, and intercrosses to obtain BDC2.5/NOD””?" animals and het-
erozygous littermates. The line was kept as balanced crosses, so that all ipr/+
and +/+ (wild-type) control mice were littermates of Ipr»/Ipr animals, eschew-
ing the risky practice of maintaining an isolated homozygous mutant line. Mice
were typed for the BDC2.5 transgenes by cytofluorimetric analysis of blood
(anti-VB4 staining) and for the Fas wild-type and Ipr alleles by PCR analysis of
tail DNA with the following primers: FasF: 3'-GTAAATAATTGTGCTTCGT
CAG-5'; FasRVI1: 3'-TAGAAAGGTGCACGGGTGTG-5'; and FasRV2: 3'-
CAAATCTAGGCATTAACAGTG-5" (generating bands at 184 bp for the wild-
type allele and 212 bp for the Ipr allele on a 2% agarose gel).
Cyclophosphamide (CY) (Sigma) dissolved in PBS was injected intraperi-
toneally at 200 mg/kg to induce type 1 diabetes; disease onset was evaluated
by measuring glucose levels in the urine with Uristix (Bayer Diagnostics). Two
consecutive measurements >10 g/l was considered indicative of diabetes;
disease status was then confirmed by a blood glucose test (considered
positive if >200 mg/dl). Mice were age 5-8 weeks at the time of CY injection.
Insulitis scoring. Thin sections from Bouin-fixed, paraffin-embedded pancre-
ases were examined for the presence of insulitis after hematoxylin and eosin
staining. Sections were made at four different levels through the pancreas, and
a minimum of 40 islets were examined for each mouse. In very young animals,
all of the available islets were analyzed.
Proliferation assays. Splenocytes depleted of erythrocytes in 0.83% NH,Cl
were cultured at 2 X 10° cells/well in 96-well flat-bottomed plates in 200 pl
Dulbecco’s modified Eagle’s medium, 10% FCS, penicillin-streptomycin, non-
essential amino acid, 1-Glu, and B-mercaptoethanol for 3 days, either with the
BDC2.5 mimotope peptide 1040-63 (16) (Peptron, Daejeon, South Korea) or
with freeze-thaw extracts from purified islet preparations. Proliferation was
assessed by incorporation of *H-thymidine in the last 16 h of culture.
Enzyme-linked immunosorbent assay. The primary anti-interleukin (IL)-2
antibody (18161D; BD Pharmingen, San Diego, CA) was diluted in PBS to 1
rg/ml to coat 96-well microtiter plates (3912; BD Falcon, Bedford, MA) for
16 h at 4°C. After five washes with enzyme-linked immunosorbent assay
(ELISA) buffer (0.1% Tween 20, 2% BSA, 0.002% NaAzide in PBS) to block
nonspecific binding, 50 wl of test supernatants (3-day-old cultures) were
added for 16 h at 4°C. The detecting IL-2 biotinylated antibody (18172D; BD
Pharmingen; 0.5 pg/ml in ELISA buffer) was then added for 1 h at room
temperature. After six washes, 50 nl/well of avidin-alkaline phosphatase (AP;
Sigma Immuno Chemicals) diluted 1:400 in blocking solution were added and
incubation was allowed for 30 min. After six washes, color was developed
with an AP reaction solution (9.6% diethanolamide, 0.25 mmol/l MgCl, [pH 9.8]
with AP substrate tablets [1 AP tablet per 5 ml of AP reaction solution];
Sigma). Plates were incubated for 10 min at room temperature, and the optical
density 405 nm was measured by plate spectrophotometry. Determinations
were performed in triplicate and quantitated by comparison with a standard
curve obtained with rIL-2 (BD Pharmingen).
CFSE labeling and adoptive transfer. Single-cell suspensions were pre-
pared from pooled spleens of BDC2.5/NOD mice depleted of erythrocytes in
0.83% NH,CI, adjusted to 107/ml in PBS, and incubated for 10 min at 37°C in
the presence of 2.5 mmol/l 5,6-carboxyfluorescein diacetate succinimidyl ester
(CFSE; Molecular Probes) prepared as a 5 mmol/l stock solution in DMSO.
After being incubated, the cells were washed twice with RPMI supplemented
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with 5% FCS, adjusted to 10%ml, and 200 pl was injected intraperitoneally.
After 66 h, lymph nodes were removed and analyzed by flow cytometry for the
presence of CFSE-labeled cells (counterstaining with anti-CD4 and anti-V4)
Quantitative PCR analysis of anergy-related genes. Splenocytes from
BDC2.5/NOD”"”?" mice were stained with biotin-conjugated BDC2.5 clono-
type mAb (17), anti-CD4, and anti-B220. Gating on CD4" B220~ cells, we
sorted (MoFlo cell sorter; Cytomation, Denver, CO) the cells into two groups,
clonotype high and clonotype low, and then prepared RNA from them (~10°
cells/group) using the Trizol method (Invitrogen, Carlsbad, CA). DNAse
treatment was performed (Ambion, Austin, TX) and then reverse transcription
with avian myeloblastosis virus reverse transcriptase (Roche, Indianapolis,
IN). Sybr green PCRs were performed, with the resulting cDNA using the
protocol and primers previously described (18). L32B and HPRT were used as
housekeeping control genes for normalization of the amount of cDNA/sample.
The HPRT primer sequence we used was forward: 3'-GACCGGTCCCGT-
CATGC, and reverse: 3'-CAGTCCATGAGGAATAAACACTTTTTC-5'.

RESULTS

To identify the level at which a deficiency in Fas expres-
sion influences the development of autoimmune diabetes,
we crossed the I[pr mutation into the BDC2.5 TCR trans-
genic line. BDC2.5 mice express the transgene-encoded
receptor on the majority of their T-cells, imparting reac-
tivity to an unknown islet -cell antigen in the context of
the major histocompatibility complex II molecule A%’
Consequently, the selection and spreading of an autoreac-
tive repertoire that occurs in the NOD mouse is experi-
mentally shortcutted. BDC2.5 animals display very rapid
and massive insulitis by age 3 weeks, but progression to
overt diabetes is subject to a variety of controlling ele-
ments (genetic influences, costimulatory control, regula-
tory cells) (19-21). An mAb antibody specific for the
BDC2.5 clonotype has recently been generated, and >80%
of the CD4" T-cells in BDC2.5/NOD TCR transgenic mice
were found to express various levels of the transgene-
encoded TCR (17). The BDC2.5/NOD and NOD”" lines,
both intensively backcrossed to the NOD/Lt background,
were intercrossed twice to generate BDC2.5/NOD?"?" and
control littermates (Ipr/+ or +/+).

We first asked whether the I[pr mutation affected the
selection of T-cells expressing the BDC2.5 TCR. The flow
cytometric analyses shown in Fig. 1 demonstrated that
BDC2.5/NOD?"" mice are not defective in their ability to
select T-cells displaying the BDC2.5 TCR. Clonotype-
positive cells were present in the spleen and lymph nodes
of these mice. We did not note any difference in the
relative proportion of cells expressing high and interme-
diate levels of clonotype (Fig. 1 and data not shown). On
the other hand, we noted an increase in the proportion of
CD4™" cells. This increase was time dependent (Fig. 1B)
and parallel to the expansion of CD4" T-cells in Ipr/ipr
mice observed elsewhere (22-24). In any case, it was clear
that the BDC2.5 specificity remained well selected in the
absence of Fas.

To determine whether Fas deficiency influences the
quantity or quality of insulitis in the BDC2.5 model, we
scored insulitis in Fas-deficient and -sufficient animals.
Insulitis appeared abruptly between ages 16 and 20 days in
BDC2.5/NOD mice, and ~90% of the islets were infiltrated
at age 24 days (19). In BDC2.5/NOD”"”?" mice, the early-
phase infiltration was clearly less aggressive than that seen
in control littermates (Fig. 24). The proportion of infil-
trated islets was lower (Fig. 2A) and the lesions were
typically of smaller size (Fig. 2B and C). This difference
was not as obvious in older animals (age >56 days).
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FIG. 1. Staining of BDC2.5/NOD or BDC2.5/NOD””"”P" gplenocytes with the BDC2.5 clonotypic antibody. A: Splenocytes from adult BDC2.5/NOD
or BDC2.5/NOD”"?" mice were stained with anti-CD4, anti-B220, and anti-BDC2.5 clonotype antibodies to permit the estimation of the
proportion of T-cells expressing the BDC2.5 TCR transgene. B: Proportion of CD4* cells in BDC2.5/NOD 77" mice compared with in BDC2.5/NOD

mice.

What are the functional consequences of the tepid
insulitis in BDC2.5/NOD?""?" mice? Because standard
BDC2.5/NOD animals rarely progress to overt diabetes, we
provoked them with CY. CY treatment induces diabetes in
100% of BDC2.5/NOD animals within a few days, with
highly reproducible kinetics (25). We administered a single
dose of 200 mg/kg CY to 5- to 8-week-old animals and
continuously monitored the development of diabetes. Fig-
ure 3 shows that BDC2.5/NOD”"?" mice were signifi-
cantly, albeit not completely, protected from diabetes
development. Thus, the mild insulitis of BDC2.5/NOD?""#"
mice did translate as a decreased propensity to convert to
diabetes after CY challenge.

Collectively, these results indicated that, even when the
T-cell repertoire is dominated by an autoimmune specific-
ity, the Fas gene can exert a strong influence. It is easy to
see how the partial reduction in diabetes incidence in the

BDC2.5 model might translate to full protection in the
NOD mouse, given that autoreactive T-cells are far less
prevalent in the latter case.

Reduced autoreactivity by T-cells from Fas-deficient
BDC2.5 mice. In theory, these influences of the Ipr
mutation on insulitis progression and diabetes develop-
ment could reflect an impact on the lymphocyte compart-
ment (due to reduced responsiveness) or on the target
B-cells (due to either decreased antigen release through
apoptosis or increased resistance to infiltration and auto-
immune destruction). To address this question, we used an
in vivo T-cell stimulation assay in which BDC2.5/NOD cells
were labeled with CFSE and then injected into a naive
host; their proliferation was reflected as a halving of CFSE
staining intensity with each cell division (26). In this
system, BDC2.5 T-cells proliferated selectively in the pan-
creatic lymph nodes (PLNs) that drain the islets and not in

FIG. 2. Insulitis in BDC2.5/NOD”"”?" mice. A: BDC2.5
transgenic mice heterozygous (wild-type) or homozy-
gous (Ipr/lpr) for the Ipr mutation were Kkilled at the
indicated ages; their pancreas sections were then pre-
pared and scored as described in RESEARCH DESIGN AND
METHODS. [, periinsulitis; M, insulitis. Representative
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histology of islets from a 30-day-old BDC2.5/NOD (B) or
BDC2.5/NOD?"P" (C) animal is shown.
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FIG. 3. CY-induced diabetes in BDC2.5/NOD”""?" mice. On day 0, CY
was injected at 200 mg/kg into BDC2.5/NOD”"”?" (O) and BDC2.5/NOD
(®) mice, and diabetes development was monitored.

other gut or subcutaneous lymph nodes (27). To elucidate
the effect of the Ipr mutation, we performed a criss-cross
experiment in which T-cells from BDC2.5/NOD”"%" or
BDC2.5/NOD** donors were injected into NOD?"%#" or
NOD*/* recipients. The genotype of the host clearly made
no difference (Fig. 4A), as proliferation was essentially
identical in wild-type and Fas-deficient hosts. (This exper-
iment could only be performed with BDC2.5/NOD”"#"
donors, as previous studies have shown that upregulated
FasL in Ipr mice will induce the death of any transferred
cells displaying Fas) (9). These results suggest that the {pr
mutation does not interfere with the availability of the
BDC2.5 autoantigen in the PLNs or the ability of dendritic
cells to present it.

On the other hand, BDC2.5/NOD”"?" T-cells prolifer-
ated markedly less well than did T-cells from BDC2.5/
NOD"™" mice when they were transferred into the
standard NOD hosts (Fig. 4B; note that the absolute values
of the controls in Fig. 4B cannot be directly compared with
those of Fig. 4A, which were performed under slightly
different conditions and with unrelated host and donors).
Thus, the Fas deficiency affected the autoreactive T-cell
rather than its target.

Hyporesponsiveness in Fas-deficient autoreactive T-
cells. These results are reminiscent of published data
suggesting a paradoxical role for Fas as a costimulator of
T-cell responses to foreign antigen (28,29). To explore this
possibility in our system, we performed proliferation as-
says using BDC2.5/NOD?”?" and BDC2.5/NOD?"*
splenocytes stimulated with the BDC2.5 mimotope peptide
1040-63 (16) (Fig. bA) or with extracts from purified islets
(Fig. 5B). There was very little difference between the
responses of Ipy/pr and wild-type T-cells to increasing
concentrations of the 1040-63 BDC2.5 mimotope peptide, a
very potent agonist, except that the mutant T-cells showed
a continuing increase in proliferation at high peptide
concentrations, concentrations at which the response of
wild-type T-cells was tapering off. It is likely that this
difference was due to the role of Fas in activation-induced
cell death (30,31). On the other hand, Fas-deficient T-cells
were very clearly hyporesponsive when challenged with
the true autoantigen present in islet extracts. This finding
held whether the islet extract was prepared from wild-type
or Fas-deficient mice, thus ruling out the possibility that
Fas might influence expression of the BDC2.5 antigen in
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FIG. 4. Criss-cross transfer experiment. A: CFSE-labeled BDC2.5/
NOD®"”P" gplenocytes were transferred into NOD””%?" or standard
NOD mice. B: CFSE-labeled BDC2.5/NOD”""?" or BDC2.5/NOD spleno-
cytes were transferred into standard NOD mice. BDC2.5 splenocytes
were isolated from 5-week-old mice; the recipients of 20 x 10 CFSE-
labeled splenocytes were 25-day-old mice. PLNs were harvested 66 h
after transfer and stained with CD44-CYCHR and CD4-PE Texas red.
After gating on CD4™" cells, we plotted the proportion of cells having
diluted the CFSE (dividing cells). Each dot represents one mouse. wt,
wild-type.

B-cells (data not shown). These results indicated that the
lpr mutation affected the responsiveness of autoreactive
T-cells, but to a degree that seemed to vary with the
T-cells’ affinity/avidity for the peptide ligand.

To reveal the reason behind the impaired proliferation
of the BDC2.5/NOD”"?" splenic T-cells when challenged
with islet extracts, we measured IL-2 production in the
cultures after stimulation (Fig. 5C and D). IL-2 release was
severely impaired in BDC2.5/NOD?"?" splenocytes with
either type of antigen, although the reduction was more
extensive when islet extract was the antigenic stimulus.
Thus, the decreased proliferation seen in BDC2.5/
NOD?"?" gplenocytes was accompanied by an impaired
production of IL-2. To determine whether this defective
IL-2 production was the root cause of the hyporesponsive-
ness, we tried to restore proliferative capacity by comple-
menting the cultures with IL-2 (Fig. 5E). IL-2 addition had

DIABETES, VOL. 53, NOVEMBER 2004
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establish normal levels of proliferation by BDC2.5/
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no effect whatsoever on the proliferation of BDC2.5/
NOD”"®" splenocytes to islet extract, indicating that the
defect in IL-2 production did not, alone, account for the
poor responses to islet antigen by Fas-deficient BDC2.5
T-cells. A stronger stimulus was provided by plates coated
with mAbs directed against CD3 and CD28 (Fig. 5F). When
BDC2.5/NOD and BDC2.5/NOD?"" splenocytes were
challenged with this stimulus, little difference was ob-
served, just as with the BDC2.5 agonist mimotope. Thus,
Fas-deficient BDC2.5 T-cells responded poorly to the au-
toantigen in its natural state, but this deficit was at least
partially overcome with high-affinity ligands.
Anergy-specific genes’ expression in the BDC2.5 Ipr/
Ipr splenocytes. To explore the possibility that a defined
state of anergy (32) might explain the inability of BDC2.5/
N7 T_cells to respond to cognate autoantigen, we
performed an analysis by real-time quantitative PCR of
genes that have been implicated in the anergic phenotype
(18). We measured levels of expression of caspase-3,
Ikaros, Grg-4, Jumonji, SOCS-2, CTLA-4, IL-10, and
mGRAIL, a subset of the genes described by Macian et al.
(18) to be particularly representative of the anergic re-
sponse. Figure 6 illustrates that there was no significant
difference in the expression of these anergy-related genes
in BDC2.5/NOD?"%" compared with BDC2.5/NOD """ con-
trol splenocytes. These results, together with the inability
of IL-2 complementation to overcome BDC2.5/NOD”?"#"
T-cell hyporesponsiveness, suggest that conventional an-
ergy is not the mechanism by which these T-cells are kept
from proliferating.
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proliferated at the same rate as BDC2.5/NOD
splenocytes with a strong stimulus (anti-CD3 plus
anti-CD28).

DISCUSSION

By exploiting the performant read-out system afforded by
the BDC2.5 TCR transgenic mouse model, this study aimed
to elucidate the point of impact of the Ipr mutation on
NOD mice, already clearly shown to protect them from
insulitis and diabetes (5,6). A priori, it was thought that the
absence of Fas could impinge on three levels of the
diabetogenesis cascade. First, it might have prevented the
early ripple of physiological B-cell death that occurs just
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FIG. 6. Sybr green analysis of genes involved in anergy. mRNA was
isolated from sorted BDC2.5™#" [pr/lpr and BDC2.5"#" wild-type
splenocytes. “Relative expression” refers to the level of transcription
of a gene in BDC2.5"#" [pr/Ipr splenocytes compared with in BDC2.5"#"
wild-type splenocytes. HPRT was used to normalize gene expression
levels. LB32 is a housekeeping gene. Three independent experiments
were performed with pooled mice age 16 weeks (two to four mice/
pool).
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before age 15 days that appears to be necessary for the
priming of autoreactive T-cells in the PLN (33-36). Second,
the Fas deficiency might have interfered with the T-cells
themselves, directly or indirectly dampening their reactiv-
ity. Third, it might have protected B-cells from terminal
destruction. The results presented here argue strongly in
favor of the second option: although the antigen presen-
tation function of NOD?”%?" mice seemed normal, the
activation of BDC2.5 T-cells by pancreatic autoantigens
was severely curtailed in the absence of Fas, both in vivo
and in vitro (Figs. 4 and 5), resulting in slow and tepid
insulitis despite the fact that the autoimmune cells were
increased (Fig. 1). Most likely, this defective activation of
autoreactive T-cells also explains the absence of insulitis
and diabetes in NOD?"””" mice, with the poor initial
activation of islet B-cell-reactive T-cells resulting in an
abortive anti-islet response.

The fact that BDC2.5/NOD”""" T-cells were clearly
defective does not rule out the possibility that the third
explanation holds as well and that Fas-induced apoptosis
plays a direct role in B-cell destruction. On the other hand,
Fas cannot be absolutely essential, as diabetes did occur
in the mutant BDC2.5 mice (Fig. 3). Similarly, the expres-
sion in islet B-cells of a dominant-negative form of the
Fas-associated death protein domain transducer molecule,
the essential transducer of Fas signaling, also failed to
prevent islet destruction (L.V., unpublished observations).
These results are also consistent with the finding that
abrogation of Fas expression specifically on 3-cells did not
influence diabetes development in another TCR transgenic
model of type 1 diabetes (13).

Savinov et al. (12), on the other hand, have shown that
Fas is involved in 3-cell death in a model where diabetes is
accelerated by FasL expression on -cells. However, it is
not clear how/whether this system translates to the normal
context.

The requirement for Fas-mediated signals to engender
full proliferative and cytokine responses to islet autoanti-
gen has precedent in other antigen-driven responses
(37,38). Conversely, FasL has been described as either a
negative or a positive modulator of T-cell selection and
activation (39-41), with opposite effects in CD4+ and
CD8+ T-cells (39—41). In fact, FasL-deficient CD4 " T-cells
have been claimed to exhibit more vigorous Ag-provoked
proliferation than their wild-type counterparts (40-42). It
is interesting that the requirement for Fas or FasL varied
with the type and affinity of the signal transduced through
the TCR, most visible with suboptimal ligands, but largely
absent with high affinity/avidity ligands (41,42). This mir-
rors our present observations, where the impact of the Fas
deficiency was more obvious with the natural autoantigen
than with the high-affinity agonist peptide.

What is the mechanism by which the Ipr mutation
impairs activation of BDC2.5 T-cells? Noorchashm et al.
(43) have proposed that the abundance of responding
BDC2.5 T-cells might affect the efficiency of T-cell activa-
tion, already below par on the NOD background. This is
unlikely, however, to account for the present observa-
tions, as the defective activation of BDC2.5/NOD”""?" cells
is already manifest at early times, before the accumulation
of CD4" cells typical of the Ipr background. One interpre-
tation is that a costimulatory signal is delivered through
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the Fas molecule itself. Another explanation might lie in
the high levels of FasL displayed on T-cells in lpr mice. The
cytoplasmic tail of FasL is rich in signal transduction
motifs (44), and one can easily imagine that a high level of
FasL at the cell surface might sequester important signal
transduction molecules. Alternatively, FasL might engage
another receptor in Fas-deficient mice. One candidate
might be DcR3/TR6, a secreted protein that binds FasL
with an affinity comparable with that of Fas, and competes
functionally with Fas for FasL binding (45,46). Binding of
DcR3/TR6 at a high level might prevent T-cell activation.
Finally, the preferential impact of the Fas-deficiency on
T-cell stimulation by the natural autoantigen is also con-
gruent with the idea that autoreactive T-cell responses are
dominated by low-affinity reactivities (47). Low affinity
responses to autoantigens might be those that are most
attuned to qualitative or quantitative variation in Fas/
FasL. Ineffective signaling through molecules of the death
receptor family, or their ligands, would dampen T-cell
autoreactivity to these targets, but at the cost of lympho-
proliferative perturbation or B-cell —driven autoimmunity.
Genetic polymorphisms at these loci in murine or human
populations might navigate between these hazards.
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