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Abstract

 

It has been reported that the differentiation of CD4

 

�

 

CD25

 

�

 

 regulatory T cells (T reg cells) can
be induced by agonist peptide/major histocompatibility complex ligands in the thymus. Exploiting
a transgenic mouse line wherein expression of a particular T cell epitope can be controlled
temporally and quantitatively, we found that diversion of differentiating thymocytes into the
FoxP3 T reg cell pathway by this agonist ligand was essentially nonexistent. However,
CD4

 

�

 

CD25

 

�

 

 thymocytes were much less sensitive than their CD4

 

�

 

CD25

 

�

 

 companions, by
two to three orders of magnitude, to agonist-induced clonal deletion, such that their proportion
increased, giving the false impression of induced differentiation. To account for these and prior
observations, one can propose that differentiation along the CD4

 

�

 

CD25

 

�

 

 pathway is induced
by cues other than recognition of self-agonist cues, which are poorly read by thymocytes,
whose T cell receptors are conducive to selection toward the conventional CD4

 

�

 

CD25

 

�

 

lineage. Thus, selective survival, rather than induced differentiation, may explain the apparent
enrichment observed here and in previous studies.
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Foxp3

 

 • thymocytes • clonal deletion • inducible expression • transgenic

 

Introduction

 

Random rearrangement of TCR gene segments to encode
functional TCR chains has obvious benefits, but comes
with a price; although it enables vertebrates to generate an
enormously diverse T cell repertoire, offering protection
against a wide variety of pathogens, it also produces thy-
mocytes displaying TCRs that recognize self-antigens and
that have the potential to cause autoimmunity. Clonal de-
letion of differentiating thymocytes bearing self-reactive
TCRs is an important mechanism for maintaining T cell
tolerance (1–3). However, this process does not remove all
self-reactive cells from the repertoire, as mature, self-reactive
T cells can be isolated from healthy individuals. Clearly,
there must be additional mechanisms that play a role in
maintaining tolerance.

Over the past few years, a variety of T cell subsets that
can inhibit T cell responses in vitro and in vivo and can
prevent or ameliorate disease in several animal models of
autoimmunity have been described (4–6). Given the po-
tential clinical benefit of these so-called regulatory T cell

(T reg cell) subsets, it is of clear interest to elucidate the
molecular mechanisms via which they differentiate and
exert their function. Amongst the best studied is the
CD4

 

�

 

CD25

 

�

 

 population, which can be found in the thy-
mus and periphery of naive mice (7–10) and has been iso-
lated from peripheral blood, tonsils, and thymus of healthy
humans (11–16). The regulatory properties of murine CD4

 

�

 

CD25

 

�

 

 T reg cells were originally apparent from these
cells’ ability to suppress autoimmune responses caused
by purified CD4

 

�

 

CD25

 

�

 

 T cells upon adoptive transfer
into nude mice (7). Recently, it has been found that differ-
entiation and function of CD4

 

�

 

CD25

 

�

 

 T reg cells is criti-
cally dependent on expression of the forkhead/winged
helix transcription factor Foxp3 (17–19). Perhaps the most
compelling argument for the importance of CD4

 

�

 

CD25

 

�

 

T reg cells in maintenance of tolerance came from the phe-
notype of the 

 

Foxp3

 

 mutant scurfy mice and 

 

Foxp3

 

-null
mice, which lack CD4

 

�

 

CD25

 

�

 

 T reg cells and die of a
lymphoproliferative wasting disease (17, 20). Furthermore,
adoptive transfer of CD4

 

�

 

CD25

 

�

 

 T reg cells into neonatal

 

Foxp3

 

-null or scurfy mice protected them, at least tempo-
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Abbreviations used in this paper:

 

 CLIP, class II–associated invariant chain
peptide; MCC, moth cytochrome 

 

c

 

.; T reg cell, regulatory T cell; tet, tetra-
cycline; TIM, tet-regulatable invariant chain with MCC.
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rarily, from disease (17, 21). The genetic mutation in im-
mune disregulation, polyendocrinopathy, enteropathy, and
X-linked inheritance (IPEX) patients, who succumb to
several autoimmune/inflammatory diseases, including in-
flammatory bowel disease, insulin-dependent diabetes mel-
litus, and thyroiditis (for review see reference 22), was
shown to map to the 

 

Foxp3

 

 gene (23, 24). There is no di-
rect evidence linking pathology in these patients to a lack
of CD4

 

�

 

CD25

 

�

 

 T reg cells, but the similarities in the dis-
ease profile between immune disregulation, polyendocrin-
opathy, enteropathy, and X-linked inheritance patients and

 

Foxp3

 

-deficient mice suggest that CD4

 

�

 

CD25

 

�

 

 T reg cells
play a critical role in T cell tolerance in humans as well.

It has been hypothesized that CD4

 

�

 

CD25

 

�

 

 T reg cells
are generated in the thymus after high-affinity interaction
of their TCR with peptide/MHC ligands, at a level of af-
finity or avidity at the brink of that resulting in clonal dele-
tion (25). Consistent with this hypothesis, MHC class II–
restricted, TCR-transgenic thymocytes differentiated into
CD4

 

�

 

CD25

 

�

 

 T reg cells when agonistic T cell epitopes
bound to MHC class II molecules were expressed on ra-
dio-resistant cells in the thymus (26–29).

After these reports of induction of CD4

 

�

 

CD25

 

�

 

 T reg
cells by agonist ligands, it seemed of interest to ask whether
the dose of the agonist peptide/MHC ligand influences the
efficiency of generation of CD4

 

�

 

CD25

 

�

 

 T reg cells. Might
there be a window of affinity between the induction of
CD4

 

�

 

CD25

 

�

 

 T reg cells and clonal deletion? Therefore,
we generated a mouse line wherein expression of a T cell
epitope from moth cytochrome 

 

c

 

 (MCC) was under the
control of a tetracycline (tet)-regulatable gene expression
system (30, 31) and, as a convenient read-out, introduced a
further transgene encoding a TCR specific for the MCC
peptide (32).

The numbers of AND CD4

 

�

 

CD25

 

�

 

 T reg cells gener-
ated in the thymus of mice expressing graded amounts of
the agonist peptide/MHC ligand were quantified, and these
cells were compared for their phenotypical and functional
properties. We arrived at an unexpected conclusion.

 

Materials and Methods

 

Constructs.

 

An invariant chain (Ii) cDNA in which the class
II–associated invariant chain peptide (CLIP)–encoding region
was substituted by MCC

 

93–103

 

 (DLIAYLKQATK) was constructed
by N. Nakano (Research Institute for Biological Sciences, Chiba,
Japan). It was constructed via a two-step overlap PCR strategy
using WT Ii cDNA as template, flanking oligos containing
EcoRI restriction sites, and the following overlapping oligos:
MCC

 

96–103

 

Ii

 

99–103

 

, sense: 5

 

�

 

-GCTTACCTGAAACAGGCTAC-
CAAGCGTCCAATGTCCATG-3

 

�

 

; and MCC

 

100–93

 

Ii

 

87–83

 

,
antisense: 5

 

�

 

-CTGTTTCAGGTAAGCGATCAAATCCACAGG-
TTTGGCAGA-3

 

�

 

. This Ii–MCC fragment was cloned into the
unique EcoRI site of pKCR3 (33). A PvuI–ApaI fragment con-
taining the SV40 early promoter and part of the rabbit 

 

�

 

-globin
intron was replaced by a PvuI–ApaI fragment from TetO-E

 

�

 

(34), containing seven tet operator (TetO) sequences, a CMV
minimal promoter, and part of the rabbit 

 

�

 

-globin intron, result-
ing in pTIM.

 

Mice. 

 

A PvuI–XhoI fragment derived from pTIM was in-
jected into (C57BL 

 

�

 

 SJL)F

 

2

 

 fertilized eggs. Transgene positive
founders were crossed with previously described CII-tTA mice
(34). Thymic RNA from double transgenic and single transgenic
offspring was tested by semi-quantitative RT-PCR and S1 nu-
clease protection assays for expression of the tet-regulatable in-
variant chain with MCC (TIM) transgene. Mice from one of the
lines showing complete dependence on the CII-tTA transactiva-
tor for TIM expression were backcrossed for three to five gener-
ations onto the B10.BR background and used in all described ex-
periments. AND-transgenic mice, carrying a TCR-recognizing
MCC

 

88–103

 

 bound to I-E

 

k

 

, were a gift from S. Hedrick (Univer-
sity of California at San Diego, La Jolla, CA; reference 32). In-
variant chain-deficient mice have been described previously (35).
Tet treatment was performed by supplementing the drinking wa-
ter with the indicated concentration of tet-HCl (Sigma-Aldrich)
plus 2 g/l equal (Merisant US). Bottles were changed twice a
week during the course of treatment. To construct radiation chi-
meras, donor bone marrow isolated from AND and TA 

 

� 

 

TIM 

 

�

 

AND donors was magnetically depleted of mature T cells (biotin
anti-CD4 and anti-CD8 mAbs with streptavidin-conjugated
magnetic beads). 2–3-mo-old, 

 

�

 

-irradiated recipients (1,000 rad)
were reconstituted with 2 

 

�

 

 10

 

6

 

 depleted BM cells and kept on
antibiotic treatment (Sulfatrim) for 6 and 8 wk before analysis. All
mice were bred and maintained under sterile barrier conditions at
the Harvard Center for Animal Resources and Comparative
Medicine (protocol no. 2954) in accordance with National Insti-
tutes of Health guidelines.

 

Flow Cytometry. 

 

Thymocyte and LN suspensions were
stained in PBS-CMF, 3% heat-inactivated horse serum, 10 mM
Hepes, and 0.03% NaN

 

3

 

 and analyzed or sorted by four- or six-
color flow cytometry on a MoFlo cell sorter (DakoCytomation).
Data were analyzed using Summit software (DakoCytomation).
The following antibodies were used for analysis: affinity-purified
goat anti–mouse GITR/TNRFSF18 polyclonal antibody (R&D
Systems); affinity-purified goat anti–human IgG (H 

 

� 

 

L) and affin-
ity-purified, FITC-conjugated donkey anti–goat IgG (H 

 

� 

 

L)
F(ab

 

�

 

)

 

2

 

 fragment (Jackson ImmunoResearch Laboratories); FITC-
labeled anti-mV

 

�

 

3 (KJ25, purified and labeled in the laboratory);
biotinylated anti-mV

 

�

 

11 (RR8.1), biotinylated anti-mV

 

�

 

3 (KJ25),
PE–anti-mCD25 (PC61), and allophycocyanin–anti-mCD4 (RM4-5;
BD Biosciences); PE-Cy7–anti-mCD8

 

�

 

 (5H10), PE-Cy7–anti-
mCD4 (RM4-5), allophycocyanin–anti-mCD8

 

�

 

 (CT-CD8a), and
streptavidin-PE–Texas red (Caltag); and allophycocyanin–anti-mCD25
(PC61; eBioscience). Dead cells were excluded from analysis by
addition of Hoechst before acquisition.

 

RNA Isolation and RNA Transcript Quantification. 

 

Total RNA
was isolated from thymic lobes by the LiCl/urea method as de-
scribed previously (36). Sorted thymocyte subpopulations were
resuspended in TRIzol (Invitrogen), and RNA was prepared ac-
cording to the manufacturer’s instructions. Residual DNA was re-
moved using a DNA-free kit (Ambion). Randomly primed cDNA
was prepared using M-MLV reverse transcriptase (Invitrogen) fol-
lowing standard procedures. Real-time PCR (TaqMan) was per-
formed using the following oligos and probes: TIM sense 5

 

�

 

-GGA-
TCCTGAGAACTTCAGGCTC-3

 

�

 

; TIM antisense 5

 

�

 

-TTGGT-
CATCCATGGCTCTAGC-3

 

�

 

; TIM probe 5

 

�

 

-FAMAACGTG-
CTGGTTGTTGTGCTGTCTCATC-TAMRA-3

 

�

 

; Foxp3 prim-
ers and probe as described in reference 18; HPRT sense 5

 

�

 

-GAC-
CGGTCCCGTCATGC-3

 

�

 

; HPRT antisense 5

 

�

 

-CAGTCCAT-
GAGGAATAAACACTTTTTC-3

 

�

 

; HPRT probe 5

 

�

 

-VICCC-
GCAGTCCCAGCGTCGTGATT-TAMRA-3

 

�

 

. Samples were
analyzed on ABI PRISM 7700 (Applied Biosystems) or Mx3000p
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(Stratagene) real-time PCR instruments. S1 protection assays were
performed as described previously (36).

 

Proliferation Assays. 

 

CD4

 

�

 

CD25

 

�

 

 T reg cell thymocytes and
CD4

 

�

 

CD25

 

�

 

 peripheral responder T cells were sorted from
TAND mice and AND mice, respectively. 2 

 

�

 

 10

 

4

 

 responder
cells were cultured in round bottom 96-well plates with graded
amounts of CD4

 

�

 

CD25

 

�

 

 T reg cell thymocytes in the presence
of 5 

 

�

 

 10

 

4

 

 irradiated B10.BR spleen cells and 10 

 

�

 

M of the
MCC

 

88–103

 

 peptide. Cells were cultured for a 72-h period, and 1

 

�

 

Ci of [

 

3

 

H]thymidine was added 16 h before harvesting and
counting.

 

Results

 

A Transgenic Mouse Line with Regulated Self-Antigen Ex-
pression.

 

We used a tet-regulatable gene expression system
to generate mice with quantitatively controlled expression
of the MCC-derived T cell epitope (30, 31). This is a dou-
ble transgenic system in which expression of a reporter
gene is dependent on binding of a tet-sensitive transactiva-
tor to regulatory sequences upstream of the reporter gene.
The transactivator normally activates reporter constructs,
but is inhibited from binding in the presence of tet in a
dose-dependent fashion (Fig. 1 A).

T cell epitopes embedded in the CLIP region of the
MHC class II–associated invariant chain can be presented
efficiently to T cell clones (37, 38). Therefore, we gener-
ated a reporter gene in which the CLIP region of a murine
invariant chain cDNA was replaced by the E

 

k

 

-restricted
minimal T cell epitope of MCC

 

93–103

 

 (39). This construct
was used to generate transgenic mice, referred to as TIM.

Transgenic animals were crossed with a previously re-
ported mouse line expressing a transactivator under the
control of the E

 

� promoter (CII-tTA, referred to as TA;
reference 34). The TA line’s transactivator is predomi-
nantly expressed in radio-resistant stromal cells of the thy-
mus, in cells that promote positive selection of CD4� lym-
phocytes by an MHC II reporter (34). Because expression
of the reporter is dependent on the presence of the transac-
tivator, we expected that the TIM transgene in TA � TIM
double transgenic mice would have a similar expression
pattern. Indeed, S1-nuclease protection assays on RNA
isolated from lymphoid and nonlymphoid organs of un-
treated TA � TIM mice revealed TIM RNA only in the
thymus (Fig. 1 B). The TIM protein was detected by im-
munostaining of thymus cryostat sections from TA � TIM
mice on an invariant chain-deficient background (35),
staining serial sections with anti–MHC class II mAbs for lo-
calization (Fig. 1 C). The TIM protein was expressed in a
subset of cells in both the cortex and medulla, at levels sim-
ilar to those of standard invariant chain protein.

The results of Witherden et al. (34) indicate that expres-
sion should be found predominantly in radio-resistant cells
of the thymic stroma. To verify this point, a set of recipro-
cal bone marrow chimeras were constructed with the
MCC93–103 reactive AND TCR-transgenic line (32), where
the TA � TIM transgenes were present in either the donor
bone marrow or the host radio-resistant stroma (Fig. 1 D).
In AND→WT chimeras, a large population of mature
CD4� T cells was present, most expressing the clonotypic
V�11 and V�3 TCR chains. A similar population was

Figure 1. Tet-controlled ex-
pression of a T cell epitope. (A)
Schematic depiction of the tet-
responsive double transgenic sys-
tem. A transactivator (TA) con-
sisting of the tet-repressor (TetR)
fused to the VP16-activating
domain is expressed via the E�
promoter. Binding of the trans-
activator to tet operator (TetO)
regulatory sequences upstream of
the minimal CMV promoter is
necessary to drive expression of a
modified invariant chain protein
and can be blocked by tet. The
modified invariant chain construct
(TIM) contains a MCC–derived,
I-Ek–restricted minimal T cell
epitope instead of the CLIP re-
gion. (B) Predominant expression
of the TIM transgene in the thy-
mus. RNA isolated from the indi-
cated organs was analyzed via S1

nuclease protection assays for transcription of the TIM gene. The DNA probe used in this assay was complementary to the first 174 bases of the recom-
binant invariant chain cDNA and 54 bases from the upstream rabbit �-globin exon sequence, allowing discrimination of TIM transcripts from the
endogenous invariant chain (Ii) transcripts on the basis of a difference in size of the protected fragments. (C) Immunohistochemical analysis of the thy-
mus from invariant chain-deficient TA � TIM mice. Adjacent frozen tissue sections were stained with the anti–MHC class II mAb M5/114 and the
antimurine invariant chain mAb IN1.1. Note that, due to the absence of endogenous invariant chain, the IN1.1 antibody reveals expression of the TIM
transgene. (D) Differentiation of AND thymocytes in BM chimeras. Profiles show the CD8 versus CD4 distribution and expression of the clonotypic
V�11 and V�3 TCR chains on mature CD4� T cells in the indicated chimeras. Note that little, if any, negative selection of AND thymocytes occurs
when only BM-derived cells are positive for the TA and TIM genes.
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found in TA � TIM � AND→WT chimeras, indicating
that little if any TIM protein was expressed by BM-derived
cells. In contrast, clonotype positive cells were largely de-
leted when radio-resistant thymic stromal cells expressed
TIM. Thus, the TIM protein is primarily expressed in both

cortical and medullary stromal cells in the thymus of TA �
TIM mice.

Next, we established that graded expression of the TIM
transgene could be achieved by providing transgenic breed-
ers with graded amounts of tet in the drinking water. TA �
TIM offspring were kept under the same treatment condi-
tions for 5–7 wk, and transcripts from the TIM transgene
were quantitated by real-time PCR (Fig. 2 A). Administer-
ing increasing doses of tet resulted in a progressive reduction
in TIM RNA expression. Although there was some mouse-
to-mouse variability, careful titration of tet permitted modu-
lation of TIM expression over four orders of magnitude, a
dynamic range matching that reported previously for tissue
culture and select organs in transgenic mice (31, 40). We
were unable to detect any TIM transcripts in the thymus of
control TIM animals lacking the TA transgene, regardless of
tet treatment, indicating that the TIM transgene is com-
pletely dependent on a transactivator for its expression.

Increased Proportion of CD4�CD25� AND T Reg Cells
upon Encounter with Increasing Amounts of an Agonist Ligand.
The broad dynamic range of this tet system, and the ex-
pression of agonist ligand on the radio-resistant thymic
stroma, provide an ideal system to ask how ligand expres-
sion levels might affect the reported differentiation of
CD4� TCR-transgenic thymocytes into CD4�CD25� T
reg cells upon encounter with agonist peptide/MHC li-
gands (26–29).

To this end, TA � TIM � AND mice, referred to as
TAND mice, were treated for life with graded doses of tet
and analyzed between 5 and 7 wk of age. RNA from one
thymic lobe was used to quantitate TIM RNA transcripts,
whereas the other lobe and LNs were analyzed by flow cy-
tometry to assess the phenotype of AND-transgenic T cells.
A reduction in the CD4�CD8� thymocyte population was
observed with increasing amounts of the MCC epitope
(Fig. 2, top). Furthermore, there was an agonist-dependent
decrease in the percentage of CD4�CD8� thymocytes ex-
pressing the AND TCR, indicating that clonotypic thy-
mocytes were eliminated via clonal deletion. Within the
clonotype positive CD4�CD8� thymocyte population, an
augmentation in the percentage of CD4�CD25� thy-
mocytes was found with increasing expression of the TIM
transgene. A similar augmentation in CD4�CD25� cells
was observed within the CD4� population in the peripheral
lymphoid organs (Fig. 2, bottom). These findings suggested
that the agonist MCC ligand directed differentiating AND
thymocytes into the CD4�CD25� T reg cell lineage in a
dose-dependent fashion, extending previous observations
(26–29) to a third TCR and a different H-2 haplotype.

Although the enrichment for CD4�CD25� cells that oc-
curred with increasing TIM expression was reminiscent of
previously described T reg cells, we verified that the cells
highlighted in our experiments were indeed of T reg cell
phenotype. The transcription factor Foxp3 has been shown
to be necessary for T reg cell differentiation and function in
mice, and is considered to be a master gene defining this
lineage (17–19). Levels of FoxP3 RNA were quantitated in
sorted CD4�CD25� and CD4�CD25� thymocytes iso-

Figure 2. Increased proportion of CD4�CD25� T reg cells upon increase
in TIM expression. (A) The amount of TIM transcripts can be regulated
by graded doses of tet. TA � TIM animals were treated for life with the
indicated doses of tet. Thymic RNA was analyzed for TIM RNA tran-
scripts via real-time PCR (TaqMan). Mice in the control group lacked
either the transactivator or reporter transgene. n.d., not detected. (B) Thymus
(top) and LNs (bottom) from TAND mice treated for life with tet were
analyzed at 7 wk of age by flow cytometry for differentiation of AND-
transgenic CD4�CD25� T reg cells. Clonotype positive T cells were
identified by staining with mAbs against the V�11 and V�3 TCR chains.
Animals shown in this panel were treated with, from left to right, 100, 60,
20, and 10 mg/l tet in the drinking water.
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lated from a group of TAND mice treated with graded
doses of tet (Fig. 3 A). In all cases, CD4�CD25� thy-
mocytes expressed higher levels of Foxp3 RNA than did
their CD4�CD25� counterparts. TIM exerted little influ-
ence. As another criterion, we tested the expression of
GITR, a member of the TNF receptor family enriched in
CD4�CD25� populations and instrumental in the inhibi-
tory effect that CD4�CD25� T cells can exert in vivo and
in in vitro proliferation assays (41–43). The majority of
CD4�CD25� thymocytes in TAND mice expressed GITR
at the cell surface (Fig. 3 B), with no apparent effect of the

amount of TIM RNA expression on the number of GITR
molecules. Finally, the ability of CD4�CD25� thymocytes
from TAND mice treated with low or intermediate doses
of tet to inhibit proliferation of CD4�CD25� AND TCR-
transgenic T cells was tested in the usual in vitro inhi-
bition assay (44, 45). Using MCC peptide as the stimulat-
ing agent, we found that CD4�CD25� thymocytes from
TAND mice expressing the TIM transcript were able to
inhibit the proliferation of CD4�CD25� responder cells in
a dose-dependent fashion (Fig. 3 C), indicating that these
thymocytes have regulatory capacity and can receive stimu-
lation via the clonotypic receptor to exert their inhibitory
effects.

The remaining CD4�CD25� thymocyte cell population
in TAND mice expressing intermediate and high amounts
of the TIM protein did not proliferate in response to the
MCC peptide and did not suppress the proliferative re-
sponse of AND T cells from a normal host (unpublished
data). As shown in Fig. 3 A, these cells did not increase ex-
pression of the Foxp3 gene, compared with the CD4�

CD25� cells in TAND mice expressing no or very little
TIM protein.

Thus, the CD4�CD25� T cells that emerge in TAND
mice are indeed cells with regulatory capacity, and the dose
of agonist ligand these cells encountered during differentia-
tion did not influence their phenotypic and functional
properties in a major way. The TAND system provides a
flexible system to study their origin.

Does Induction of CD4�CD25� Clonotypic T Reg Cells
Occur within a Window of Avidity? To address whether the
selection of the CD4�CD25� cells takes place in a particular
window of antigen dose relative to that which provokes
clonal deletion, we analyzed a large group of triple trans-
genic TAND mice treated with a range of tet doses, to cover
a wide spectrum of TIM expression on thymic stromal cells.
As shown in Fig. 4 A, the proportion of CD4�CD25� cells
did increase considerably over the mid-range, consistent
with the data of Fig. 2. At the highest TIM expression,
CD25�CD4� cells were eliminated, consistent with the de-
letion of T reg cells at very high antigen doses reported by
Shih at el. (46). Yet, when we plotted the actual number of
CD25� and CD25�CD4� cells as a function of the amount
of TIM transgene expression (Fig. 4 B), it became clear that
the number of CD4�CD25� cells remained essentially flat,
with no significant conversion from CD25� to CD25� phe-
notypes. The relative increase in CD4�CD25� cells oc-
curred in the range of antigen dose where the deletion of
conventional CD4�CD25� cells was evident. Thus, essen-
tially all conventional CD4�CD25� cells underwent clonal
deletion, rather than conversion to a CD25� phenotype,
and the increase seen in Fig. 2 was only a mirage.

When the data were replotted on a different scale, a
slight numeric increase in clonotype positive CD4�CD25�

cells was seen, from 1.5 to 4 � 105 on average (Fig. 4 C,
closed symbols). However, clonotype negative CD4�

CD25� thymocytes, most of which should be insensitive
to TIM, showed a similar expansion (Fig. 4 C, open sym-
bols). The proportion of clonotype positive cells in the

Figure 3. Characterization of CD4�CD25� thymocytes in TAND
mice. (A) RNA extracted from one thymic lobe of TAND animals
treated with graded doses of tet was analyzed by real-time PCR for the
relative amount of TIM RNA. CD4�CD25� and CD4�CD25� thy-
mocytes were sorted from the other lobe, and RNA purified from these
cell populations was assayed by real-time PCR for the relative expression
level of Foxp3 transcripts. Relative Foxp3 RNA levels were plotted as a
function of TIM RNA transcripts levels. (B) CD4�CD25� thymocytes in
TAND mice express GITR. V�3�CD4�CD25� thymocytes from ani-
mals treated for life with 250 mg/l (black line, no TIM message detected)
or 40 mg/l (gray line) tet and V�3�CD4�CD25� thymocytes from ani-
mals treated with 250 mg/l tet (dotted black line) were analyzed for cell
surface expression of GITR via flow cytometry. The solid gray histogram
shows staining with affinity-purified control antibodies. (C) CD4�CD25�

thymocytes from a TAND mouse treated with 50 mg/l tet were purified
via cell sorting using mAbs against CD4, CD8, and CD25. Staining with
mAbs against both TCR chains was omitted to avoid potential stimulatory or
inhibitory effects on the T reg cells. Increasing numbers of these cells
were added to wells containing fixed numbers of CD4�CD25� AND T
cells. Cultures were grown for 3 d in the presence of 10 �M MCC88–103

peptide, and [3H]thymidine was added during the last 16 h of culture.
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CD4�CD25� population, quite low in the absence of
TIM, remained as such with TIM induction (Fig. 4 D).
Hence, even the modest increase noticed in the clonotype
positive T reg cell population was most likely attributable
to expansion into thymic space vacated by conventional
CD4�CD25� cells.

These data provide evidence that CD4�CD25� T cells
in the MCC system are more resistant to clonal deletion in-
duced by an agonist peptide/MHC ligand than their
CD4�CD25� counterparts. They also indicate that there is
little or no induction of differentiation of CD4�CD25� T
reg cells in a thymus expressing MCC–peptide/MHC com-
plexes, whatever the dose of the agonist ligand.

Discussion
The number and phenotype of AND thymocytes differ-

entiating into CD4�CD25� T reg cells was barely influ-
enced by interaction with MCC–peptide/MHC com-
plexes expressed on radio-resistant thymic stromal cells.
This was not due to any requirement of a critical number
of agonist complexes to be expressed by the stromal cells
because diversion into the T reg cell pathway was absent
over a wide range of expression levels of MCC–pep-
tide/MHC complexes. Instead, CD4�CD25� T reg cell
thymocytes proved to be more resistant than their CD4�

CD25� counterparts to clonal deletion. This explains their
relative enrichment in the presence of cognate ligand;
as conventional CD4� die off with increasing agonist, the
apparent proportion of more resistant T reg cell increases,

even though their numbers remain constant. That agonist
ligand induces T reg cell differentiation is just a mirage.

The inefficient recruitment of AND-transgenic thy-
mocytes into the CD4�CD25� T reg cell lineage in
TAND mice appears at odds with prior reports describ-
ing the differentiation of TCR-transgenic thymocytes into
CD4�CD25� T reg cells in response to encounter with ag-
onist ligands displayed by stromal cells (26–29). Were these
data misinterpreted by relying on apparent cell proportions
rather than true cell counts? Indeed, reexamination of the
published data shows that, in several instances, it was also
the relative proportion of CD4�CD25� cells, but not their
absolute number, that increased in response to agonist
ligand (26, 28). In the DO11.10 system, Kawahata et al.
counted 2.0 	 0.9 � 105 CD4�CD25� cells in the absence
of antigen, and only 2.7 	 0.9 � 105 cells with antigen
(28). In the HA system, there were only 1.5 � 105

CD4�CD25� thymocytes in the presence of antigen, obvi-
ously not the number of CD4� single positives expected
from an efficient inductive process. Thus, deviation toward
the CD4�CD25� pathway also seems numerically very
limited, bringing into question the reality of agonist in-
duced differentiation in the HA and OVA systems as well.

However, there are several caveats to a summary dis-
missal of the notion of agonist-induced differentiation of T
reg cells. First, one might argue that the TIM agonist ligand
does induce differentiation along the CD4�CD25� path-
way, but that this is masked because of homeostatic control
or negative feedback preventing the accumulation of 
2–
15 � 105 such cells per thymus. If that were the case, one

Figure 4. Enumeration of thymocyte populations in tet-treated TAND mice. (A) The propor-
tion of clonotype positive CD4�CD25� thymocytes amongst CD4� thymocytes is dependent on
the expression level of the TIM transgene. (B) Absolute number of clonotype positive CD4�

CD25� (open circles) and CD4�CD25� (closed diamonds) thymocytes in tet-treated TAND
mice, based on the analysis shown in Fig. 2, as a function of the relative expression level of TIM
RNA in the thymus of these animals. Control animals lacked either the transactivator or reporter
transgene. (C) Absolute numbers (as million cells/whole thymus) of clonotype positive (closed di-
amonds) and clonotype negative (open triangles) CD4�CD25� thymocytes in thymi of tet-treated
TAND mice. The relative increase in clonotype positive cells upon encounter with increasing
amounts of the agonist ligand is very modest. Note that, at the highest doses attainable in this sys-
tem, clonotype positive CD4�CD25� thymocytes undergo clonal deletion. (D) Representative
examples showing the percentage of clonotype positive CD4�CD25� thymocytes are shown for a
range of TIM doses (indicated by black arrows).
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would have expected that the proportion of cells expressing
the AND clonotype would increase in the presence of
TIM ligand. This prediction was not correct; although
variable from mouse to mouse and quite lower than in
conventional CD4� cells, the proportion of clonotype pos-
itive cells did not correlate with agonist exposure (Fig. 4
D). A counter argument could be made that receptor edit-
ing, perhaps favored by FoxP3 expression, secondarily re-
duced clonotype expression, but it would have to be a co-
incidence that the original 50% ratio were preserved through
a broad range of agonist concentration.

Second, it is possible that only specific epithelial niches
can support agonist-induced differentiation of T reg cells.
The issue may be complicated by the fact that a variety of
promoters were used to drive expression of the transgenic
neo-antigen in this and previous studies (SV40, RIP, Ld,
and Ig-� previously, MHC II here). The transgenic trans-
activator used here drives TIM expression in epithelial- but
not in BM-derived macrophage/dendritic cells (Fig. 1 and
reference 34), and should have been effective at eliciting T
reg cells (26). Yet, it is possible that different compartments
of epithelial cells may preferentially lead to clonal deletion
rather than selection of T reg cells, and that this niche does
not express TIM protein in TA � TIM mice.

Third, it is also possible that the particular affinity of the
AND/MCC pair makes it particularly inefficient at eliciting
T reg cell differentiation, whatever the amount presented,
whereas other TCR/Ag systems would be more favorable.

Another argument made in support of the notion that
self-agonists promote the CD4�CD25� differentiation path-
way is that CD4�CD25� cells are often very rare or absent

in TCR-transgenic RAG-deficient mice, but that they
appear in the presence of an agonist ligand (27–29). This
denotes a requirement for endogenous TCR chains for
CD4�CD25� selection. Yet there are two distinct inter-
pretations for this finding: (a) as previously held, that non-
transgenic TCR chains are required to yield the degree of
self-reactivity that the transgenic clonotype is unable to
provide; and (b) alternatively, that the transgenic clonotype
is less efficient at interacting with the ligand that promotes
CD4�CD25� differentiation, but that it naturally leads to
very efficient selection of conventional CD4� cells. In this
light, it is important to remember that all TCR-transgenic
mouse strains used in this and other studies were derived
from conventional CD4� cells, with an additional “experi-
mental bias” that favored lines with efficient selection into
the CD4� lineage. These lines also have grossly perturbed
thymic architecture (47), perhaps eliminating or destroying
a niche required for T reg cell differentiation. Thus, one
can readily envision that the overwhelming positive selec-
tion of conventional CD4� cells in TCR-transgenic RAG
mice dwarfs and outcompetes T reg cell differentiation, and
that agonist ligand only serves to relieve this competition.
Here again, agonist-induced differentiation of T reg cells
would also be a mirage.

If an agonist ligand per se does not promote the differen-
tiation of CD4�CD25� cells, then how do they arise? The
model shown in Fig. 5 presents this different perspective on
T reg cell differentiation, attempting to account for the ob-
servations made here and in work from other laboratories.
The main tenets are that CD4�CD25� cells are in-
efficiently selected in MHC II–restricted TCR-transgenic

Figure 5. Factors determin-
ing the relative size of the
CD4�CD25� compartment. This
model, which attempts to group
information from previous studies
and the present work, proposes
that two main factors that deter-
mine the efficiency via which
thymocyte precursors (gray circles)
are directed toward the conven-
tional CD4�CD25� pathway
(blue circles) or the CD4�CD25�

T reg cell pathway (red circles).
First, the poor ability of MHC
II–restricted thymocytes to be-
come T reg cells as noted quasi-
universally in MHC II–restricted
TCR-transgenic (Tg) systems.
This is probably not unexpected,
as there is an “experimental bias”
in the Tg lines analyzed by the
community, with a strong selec-
tion for lines that show robust
MHC II selection to the con-

ventional CD4� compartment. Second, the relative resistance of CD4�CD25� T reg cell thymocytes to clonal deletion induced by MHC II/p ligands is
clearly established in this paper. The model proposes that the relative changes between populations can be accounted for by a competitive balance be-
tween these two forces: when T precursors express a TCR that promotes very efficient selection to the conventional CD4SP pathway, the CD4�CD25�

T reg cell lineage is underrepresented, and this is particularly true when the RAG deficiency prevents the rescue of the CD4�CD25� T reg cell pathway
through endogenous TCRs. In contrast, the presence of agonist ligand, which selectively eliminates conventional CD4�CD25� cells, brings forth the T
reg cell pathway.
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mice not because they miss a strong agonist signal, but be-
cause this pathway is poorly elicited by the MHC II ligands
that elicit conventional CD4� cells, and that there is com-
petition between the lineages. In TCR-transgenic mice,
the inefficient selection of CD4�CD25� via the transgenic
clonotype results in frequent reliance on endogenous TCR
chains, and the cells are partly outcompeted by conven-
tional CD4� cells whose TCR matches well with MHC II
ligands. This competition is relieved with the display of ag-
onist on the thymic stroma, which preferentially eliminates
the conventional lineage. In TCR-transgenic mice on a
RAG-deficient background, as observed in other studies,
the situation is more extreme; without an agonist, the
CD4�CD25� lineage is in an even more precarious situa-
tion, as it cannot resort to endogenous TCR chains for se-
lection, and competition from the fully selectable conven-
tional lineage is even stronger. But the presence of agonist
has a more drastic impact because the conventional lineage
cannot escape deletion by expressing endogenous chains.

In this model, what promotes selection into the CD4�

CD25� pathway? One can imagine that the ligand, or the
selection niches, would be different. The selecting cells
may be different from those that support conventional se-
lection, providing an alternative costimulatory influence or
MHC II molecules with a different peptide cargo or con-
formation than those selecting conventional cells. Ben-
singer et al. (48) have provided evidence that MHC II
seems required for the selection of cells with T reg cell ac-
tivity (yet MHC II–deficient mice contained paradoxically
high numbers of CD4�CD25� cells whose characteristics
remain uncertain, and the functional assays used to test
their T reg cell capabilities may have been complicated by
reaction to alien MHC II molecules).

One of the key observations of this paper is that CD4�

CD25� T reg cells are very resistant to clonal deletion in-
duced by agonist peptide, considerably more so than con-
ventional CD4� cells. From a functional standpoint, this
implies that a significant component of the repertoire of
CD4�CD25� T reg cells is self-reactive: a large proportion
of TCRs generated by TCR rearrangement and pairing
exhibits spontaneous reactivity to MHC molecules (15–
60% depending on estimates; references 49–51). This
self-reactivity is weeded out of the conventional repertoire
by clonal deletion, but can persist in CD4�CD25� T reg
cells. Thus, the repertoire of CD4�CD25� T reg cells
molded by resistance to clonal deletion will be enriched in
self-reactive specificities, as previously envisioned (26–29),
but through a selective rather than an inductive process.
From a mechanistic standpoint, the signal transduction
pathways or pro-/antiapoptotic balance must be different
in conventional T CD4� cells or CD4�CD25� T reg cells.
In this respect, it is interesting that GITR has been impli-
cated in T cell apoptosis; T cells in GITR-deficient mice
are more sensitive to activation-induced cell death, whereas
GITR-transgenic clones are more resistant (52, 53). Hu-
man Jurkat T cells cotransfected with hGITR and hGITR
ligand were also resistant to activation-induced cell death

(54). GITR might be one of the means through which
CD4�CD25� cells resist negative selection.

In conclusion, our data indicate that MCC agonist ligand
does not directly promote differentiation of AND-trans-
genic precursors into CD4�CD25� T reg cells, calling into
question the paradigm of agonist-driven differentiation of
CD4�CD25� cells, and leading one to envision a conceptu-
ally different model. In fairness, it is unclear whether the ob-
servations made here can be generalized to other TCR/Ag
pairs, and whether peculiarities of the AND/TIM system,
such as affinity or expression niches, may condition the out-
come. However, at the very least, the present data demon-
strate that there is significant specificity to T reg cell differ-
entiation and that induction by agonist ligands, if it occurs, is
not available to cells expressing any TCR or encountering
self-agonist in any epithelial niche. Ultimately, the solution
will come from clearly elucidating the natural ligands that
normally promote FoxP3 expression and differentiation to-
ward the CD4�CD25� pathway, and how they may differ
from those that select conventional CD4� T cells.
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