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Proteotoxic stress response drives T cell 
exhaustion and immune evasion
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Chronic infections and cancer cause T cell dysfunction known as exhaustion. This cell 
state is caused by persistent antigen exposure, suboptimal co-stimulation and  
a plethora of hostile factors that dampen protective immunity and limit the efficacy  
of immunotherapies1–4. The mechanisms that underlie T cell exhaustion remain 
poorly understood. Here we analyse the proteome of CD8+ exhausted T (Tex)  
cells across multiple states of exhaustion in the context of both chronic viral 
infections and cancer. We show that there is a non-stochastic pathway-specific 
discordance between mRNA and protein dynamics between T effector (Teff) and Tex 
cells. We identify a distinct proteotoxic stress response (PSR) in Tex cells, which we 
term Tex-PSR. Contrary to canonical stress responses that induce a reduction in 
protein synthesis5,6, Tex-PSR involves an increase in global translation activity and  
an upregulation of specialized chaperone proteins. Tex-PSR is further characterized  
by the accumulation of protein aggregates and stress granules and an increase in 
autophagy-dominant protein catabolism. We establish that disruption of proteostasis 
alone can convert Teff cells to Tex cells, and we link Tex-PSR mechanistically to persistent 
AKT signalling. Finally, disruption of Tex-PSR-associated chaperones in CD8+ T cells 
improves cancer immunotherapy in preclinical models. Moreover, a high Tex-PSR in 
T cells from patients with cancer confers poor responses to clinical immunotherapy. 
Collectively, our findings indicate that Tex-PSR is a hallmark and a mechanistic driver 
of T cell exhaustion, which raises the possibility of targeting proteostasis pathways as 
an approach for cancer immunotherapy.

T cell exhaustion represents a hypofunctional state characterized by 
reduced effector function and increased inhibitory receptor expres-
sion that arises from persistent antigen exposure and a hostile micro-
environment7. Tex cells observed in cancer fail to eliminate malignant 
cells, and this limitation mediates a key mechanism of resistance to 
immunotherapies1–3. The exhaustion program generates a heterogene-
ous Tex cell population. Progenitor Tex (Tprog) cells retain stemness and 
self-renewal capacity that respond to immune checkpoint blockade 
(ICB) therapies and differentiate into intermediate T (Tint) cells with 
cytolytic capacity8–10. Conversely, terminal Tex (Ttex) cells accumulate 
over time and respond poorly to ICB therapies8,11–13. T cell exhaustion 
also limits the efficacy of chimeric antigen receptor (CAR) T cell therapy 
against solid tumours14–17. Consequently, a better understanding of 
T cell exhaustion is essential to overcome the limitations of current 
immunotherapies.

Although transcriptomic profiling has provided insights into Tex 
cell biology, mRNA abundance is not always a faithful proxy of protein 
expression across various organisms18–22. Previous studies have revealed 
poor mRNA–protein correlation in T cells regardless of functional 
status23–25 and the importance of post-transcriptional regulation in 
T cell differentiation and function26. In this context, a high-resolution 
proteomic map of Tex cells would be valuable. In this study, we define 
the proteomic landscape of Tex cells across various settings, including 
an in vitro exhaustion model, in vivo chronic lymphocytic choriomen-
ingitis virus (LCMV) infection in mice, and colon tumour and bladder 
tumour mouse models. We demonstrate that there is pathway-specific 
discordance between transcript and protein levels.

We also elucidate the intricate layers of protein-level regulation per-
taining to a PSR that is specific to Tex cells. We show that PSR in Tex cells 
shares similarities to unfolded protein responses and integrated stress 
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responses. However, a marked difference is that PSR in Tex cells is char-
acterized by increased global protein synthesis. This Tex cell-associated 
PSR signature, which we term Tex-PSR, is further marked by the selective 
activation of chaperone proteins such as gp96 (also known as GRP94; 
encoded by Hsp90b1) and BiP (encoded by Hspa5) and the accumula-
tion of protein aggregates that are predominantly driven by sustained 
activation of the AKT pathway. The introduction of misfolded proteins 
alone could convert Teff cells to Tex cells, which demonstrates the cau-
sality of dysregulated proteostasis in T cell exhaustion. Finally, we 
demonstrate that Tex-PSR is also a hallmark of human Tex cells in cancer 
and that it may contribute to resistance to cancer immunotherapy.

Discordance between RNA and protein levels
To determine whether gene expression levels reflect protein expres-
sion levels in T cells, we used an established in vitro exhaustion model 
that induces T cell exhaustion through repeated T cell receptor (TCR)  
stimulation27,28. We then performed parallel RNA sequencing and 
quantitative proteomics by mass spectrometry (MS) (Extended Data 
Fig. 1a). Compared with acutely activated T cells (Teff cells), chronically 
stimulated cells (Tex cells) exhibited impaired survival, proliferation and 
cytokine production, which were accompanied by increased expression 
levels of exhaustion markers, including PD1 and TIM3 (Extended Data 
Fig. 1b,c). To improve detection sensitivity, quantification and repro-
ducibility, we applied the chromatogram library approach for all prot-
eomic data collection (Extended Data Fig. 1d). The expression dynamics 
of key activation, exhaustion and stemness markers of T cells, such as 
CD25, PD1, CD39 and TCF1, obtained from the MS results aligned well 
with data obtained by spectral flow cytometry (Extended Data Fig. 1e).

We then ascertained whether transcript levels are a reliable surrogate 
for protein expression levels in T cells. In both Teff and Tex cells, mRNA 
and protein expression levels were weakly correlated, as indicated 
by Pearson’s correlation coefficients of 0.31 and 0.38, respectively 
(Extended Data Fig. 2a). Moreover, the degree of correlation between 
RNA and protein levels did not seem to be stochastic but were function-
ally related (Extended Data Fig. 2b,c). A group of proteins that exhibited 
comparable mRNA and protein expression levels in >300 cancer cell 
lines29, termed ‘housekeeping’ in this context, aligned well with RNA 
expression levels in T cells (Extended Data Fig. 2b). Proteins involved 
in the regulation of TCR signalling, cell death and cytokine responses 
exhibited a similarly strong correlation with RNA expression levels, with 
correlation coefficient values of around 0.7. By comparison, transcrip-
tion factors (TFs) exhibited a moderate correlation between mRNA and 
protein expression levels, with some TFs showing detectable changes 
exclusively at the protein level, including FOXO1 and T-bet (Extended 
Data Fig. 2c,d). Furthermore, the levels of proteins associated with 
metabolic processes, post-transcriptional regulation and epigenetic 
regulation aligned poorly with mRNA levels (Extended Data Fig. 2c). 
The three major metabolic pathways—glycolysis, oxidative phospho-
rylation and fatty acid metabolism—showed discrepancies between 
RNA and protein levels, with most of the changes in mRNA levels not 
reflected at the protein level (Extended Data Fig. 2e). These results 
underscore the importance of directly defining the proteome rather 
than inferring it from the transcriptome.

PSR and specialized chaperone enrichment
We next generated a kinetic proteomic landscape of T cells during T cell 
exhaustion by leveraging the LCMV infection model. Antigen-specific 
CD8+ T cell subpopulations were isolated after acute (Armstrong strain) 
or chronic LCMV (clone 13 strain) infection and analysed (Fig. 1a). The 
following endogenous CD8+ T cell subpopulations specific for viral anti-
gens (gp33 and gp276) were sorted for MS analysis at days 8 and 30 after 
infection: short-lived effector T cells (SLECs), memory precursor effec-
tor cells (MPECs) and central memory (TCM) and effector memory (TEM) 

T cells from Armstrong infection; and SLAMF6+CX3CR1– Tprog, CX3CR1+ 
Tint and SLAMF6–CX3CR1– Ttex cells from clone 13 infection (Extended 
Data Fig. 3a). We applied a previously defined transcriptomic signa-
ture for T cell exhaustion30 to analyse our proteomic data. Notably, in 
addition to increased expression of protein signatures associated with 
exhaustion and pro-apoptosis, Ttex cells exhibited a marked enrichment 
of proteins in the PSR pathway (Fig. 1b). We applied the same gene sig-
natures to a single-cell RNA sequencing (scRNA-seq) dataset of mouse 
gp33+CD8+ T cells after LCMV clone 13 infection31. The upregulation of 
PSR in Tex cells was readily discerned at the protein but not the transcript 
level (Extended Data Fig. 3b). We also generated a proteomic dataset of 
transgenic T cells against a Db-restricted gp33 epitope of LCMV (called 
P14) at days 8, 15 and 30 after infection32 (Extended Data Fig. 3c). PSR 
was similarly upregulated in P14 cells after clone 13 infection but not 
Armstrong infection (Extended Data Fig. 3d).

To further investigate proteome dynamics and PSR in T cell exhaus-
tion, we performed proteomic analyses of Teff and Tex cells generated 
in vitro, which enabled us to achieve increased proteome coverage. 
T cells were collected on days 2, 4, 6 and 8 after initial activation to 
track proteomic dynamics during T cell activation and exhaustion 
as described above (Extended Data Fig. 1a). T cells exhibited distinct 
protein expression dynamics depending on the differentiation state 
(Fig. 1c). The expression dynamics of key activation, exhaustion and 
stemness markers, such as TCF1, SLAMF6, PD1 and TIM3, obtained 
by MS analyses aligned well with T cell states (Extended Data Fig. 4a). 
Overall, eight distinct clusters of proteins were identified (Fig. 1c and 
Extended Data Fig. 4b). Notably, proteins in cluster 6 were specifically 
upregulated in Tex cells, which typically expressed exhaustion markers 
such as TIM3, CD39 and LAG3 (Fig. 1c), as well as molecules involved 
in protein transport, modification and quality control (Fig. 1d). In par-
ticular, proteins involved in the endoplasmic reticulum (ER) stress 
response were significantly increased as T cells became more exhausted 
(Fig. 1e). An increase in the expression of proteins integral to transla-
tion, transport and quality control in Tex cells compared with Teff cells 
indicates that there is an induction of a distinct PSR during the T cell 
exhaustion process (Fig. 1e).

We next performed a proteomic study of T cells isolated ex vivo 
from the tumour milieu of mouse models of MC38 colon cancer and 
MB49 bladder cancer (Fig. 1f). Antigen-experienced CD44hiCD8+ T cells 
were sorted by flow cytometry into Tprog, Tint and Ttex cells8,11 (Fig. 1g). 
In the MC38 tumour model, the Ttex population exhibited upregulated 
proteins associated with the ER stress response and proteins associ-
ated with autophagy and transport (Fig. 1h). The upregulation of ER 
stress proteins was also observed in T cells isolated from MB49 bladder 
tumours (Fig. 1h).

Chaperone proteins are crucial for ensuring protein quality con-
trol. Notably, we observed a heterogeneous expression of chaperones 
(Fig. 1i). On the basis of their expression patterns, we categorized them 
into three groups: quiescence, activation and PSR chaperones (Fig. 1i). 
The quiescence-related chaperones showed the highest expression in 
naive T cells. The second group of chaperones, compromising cyto-
solic HSP90α and HSP90β, TRiC complex subunits (TCP1α–TCP1θ) 
and mitochondrial chaperone HSP75 (also known as TRAP1), were 
induced by TCR stimulation but reduced in Tex cells, which implicated 
a link with T cell activation. Conversely, proteins in the third group, 
including several ER chaperones such as BiP and gp96, were overex-
pressed in Tex cells, which indicated that they may have specialized 
roles in T cell exhaustion. These exhaustion-associated chaperones 
were significantly upregulated in the Ttex cell population from both 
MC38 and MB49 tumours (Fig. 1j). We performed additional analyses of 
proteomes of LCMV-specific T cells and tracked the expression kinetics 
of these chaperones during chronic infection (Extended Data Fig. 3c). 
Consistently, BiP, gp96 and HSPA13 were upregulated in P14 cells from 
mice infected with clone 13, whereas the expression of TRiC complex 
subunits was downregulated (Extended Data Fig. 3e). Together, these 
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findings indicate that the activation of PSR and the associated upregu-
lation of PSR chaperones are a common hallmark of T cell exhaustion.

Dysregulated proteostasis in Tex cells
Our proteomic data indicated that PSR is activated in Tex cells. We next 
examined whether proteostasis in Tex cells is disrupted. We stained Teff 
and Tex cells with the fluorescent dye NIAD-4 or its derivative CRANAD-2, 
which bind to amyloid-like structures enriched in misfolded proteins 
and aggregates33. Tex cells showed a significant accumulation of protein 
aggregates compared with Teff cells (Fig. 2a,b). In tumour-infiltrating 
T cells (TILs) isolated from MC38 and MB49 tumours, protein aggre-
gates progressively increased as T cells became more exhausted 
(Fig. 2c,d). This result suggests that the protein quality control system 
is significantly impaired in Tex cells.

The activation of PSR, the upregulation of specialized chaperone 
proteins and the accumulation of protein aggregates in Tex cells led 
us to initially predict that T cell exhaustion is associated with attenu-
ated translation to prevent further protein overload. However, this 
prediction was incorrect based on the following considerations. First, 
proteins with internal ribosome entry sites (IRES) that are not subject 
to EIF2α-mediated translation attenuation should be enriched rela-
tive to proteins without IRES in Tex cells34. However, this was not the 
case (Extended Data Fig. 5a). Second, we did not observe enrichment 
of proteins that rely on the alternative translation initiation factor 
EIF2A owing to the presence of an unconventional 5′ upstream open 
reading frame35 (Extended Data Fig. 5b). Third, proteins with concur-
rent upregulation at RNA and protein levels in Tex cells were overrep-
resented in translation initiation, elongation and stress-response 
pathways (Extended Data Fig. 5c). Fourth, levels of the translation 
repressor PDCD4 (refs. 36,37) were significantly reduced in Tex cells 
both in vitro and in vivo (Extended Data Fig. 5d). Fifth, our proteomic 
analysis revealed an upregulation of translation but not transcriptional 
machinery in Tex cells (Extended Data Fig. 5e–g). Proteins involved in 
translation were upregulated in Tex cells induced by chronic LCMV 
clone 13 infection (Extended Data Fig. 6a). Moreover, the translation 
initiation factors EIF2D and EIF4G3 exhibited sustained high expression 
in P14 cells from mice with chronic infection but were reduced over 
time in mice with acute infection (Extended Data Fig. 6b).

These findings prompted us to directly assess translation rates by 
measuring the incorporation of l-homopropargylglycine (HPG), a 
methionine analogue, into newly synthesized proteins. Notably, Tex 
cells exhibited a significantly increased rate of protein synthesis 
compared with acutely stimulated Teff cells (Fig. 2e). We also meas-
ured translation changes in vivo in different TIL subsets by injecting 
O-propargyl-puromycin (OPP) into mice with MC38 tumours to label 
elongating polypeptide chains during active translation38. Ttex cells 
showed significantly higher OPP incorporation than Tprog and Tint cells 
(Fig. 2f). We validated this result by isolating TILs into single-cell sus-
pensions followed by ex vivo HPG translation assays. This experiment 
was performed to further exclude the possibility that different spatial 
distributions of T cell subpopulations caused inconsistent access to 
OPP. Consistently, Ttex cells showed increased protein translation rates 
in both MC38 and MB49 tumour models (Extended Data Fig. 6c,d).

Next, we characterized important subcellular events typically asso-
ciated with PSR. Stress granules (SGs) are dynamic, reversible protein 
and RNA granules that form under cellular stress and are evident during 
T cell activation39,40. The formation of SGs in Tex cells was increased, 
as evidenced by both analyses of morphology and expression of the 
SG marker G3BP1 (Extended Data Fig. 7a–c). We further explored the 
functional roles of SGs in Tex cells. Disruption of SGs by knocking out 
G3bp1 resulted in an increased production of the cytokines IFNγ and 
TNF (Extended Data Fig. 7d,e). However, loss of G3bp1 significantly 
compromised the survival of chronically stimulated Tex cells (Extended 
Data Fig. 7f).

Tex cells also exhibited increased proteasome and lysosome activ-
ity (Extended Data Fig. 7g,h). We therefore investigated the kinetics 
of global protein catabolism in Tex cells. Cells were labelled with HPG 
for 30 min, then changed to regular culture conditions without HPG. 
Although nascent proteins were produced in high levels, they were 
rapidly degraded in Tex cells (Extended Data Fig. 7i). This protein catabo-
lism in Tex cells was driven largely by autophagy (Extended Data Fig. 7j).

Taken together, these results show that Tex cells have a distinct 
non-canonical PSR, which we term Tex-PSR. Tex-PSR is characterized 
by the induction of PSR and the formation of SGs, protein aggregate 
accumulation and increased protein catabolism, coupled paradoxically 
by enhanced global protein synthesis.

Molecular definition of protein aggregates
We next asked what proteins were prone to aggregation in Tex cells. To 
that end, we used native gel electrophoresis to analyse the migration 
pattern of proteomes (Fig. 2g). On the basis of proteome characteriza-
tion, we focused on the following three differentiation states of T cells: 
Teff cells (day 4 acutely activated T cells); early Tex cells (day 4 chronically 
activated T cells); and late Tex cells (day 8 chronically activated T cells) 
(Extended Data Fig. 4c,d). Both early and late Tex cells showed upregu-
lation of ER stress responses compared with Teff cells (Extended Data 
Fig. 4e,f). To define aggregation-prone proteins, Teff, early and late Tex 
cells were first lysed with mild lysis buffer to maintain their native con-
formation followed by high-speed centrifugation to remove nucleoli 
and other insoluble materials. Supernatants were then subjected to 
native PAGE electrophoresis. Proteins that migrated below 140 kDa (low 
molecular weight (LMW) species) and above (high molecular weight 
(HMW) species) from the gel were then defined by MS. We detected 
and quantified 3,889 proteins, and 2,878 of these proteins (74%) shifted 
from LMW to HMW species in Tex cells. This finding indicated that there 
was a large-scale level of protein aggregation in the exhaustion state 
(Fig. 2h). We next examined whether proteins associated with specific 
pathways were preferentially aggregated in Tex cells. However, there was 
no such preference, which suggested that protein aggregation occurred 
globally (Fig. 2i). Still, effector molecules, including granzyme B, gran-
zyme C and perforin, in Tex cells showed significant enrichment in HMW 
species compared with Teff cells (Fig. 2j). The Tex-PSR chaperones gp96 
and BiP also showed a trend in moving towards HMW species. Notably, 
AKT1 did not demonstrate signs of aggregation in Tex cells (Fig. 2j). We 
also resuspended and profiled proteins in insoluble material through 
additional harsh lysis (Extended Data Fig. 8a). We observed an enrich-
ment of granzyme B in Tex cells compared with Teff cells (Extended Data 
Fig. 8b). The inhibitory receptor PD1, despite being a transmembrane 
protein, was retained in the soluble fraction (Extended Data Fig. 8c).

Next, we used immunoblotting to validate the aggregation state of 
some of the identified proteins (Fig. 2k). In Tex cells, granzyme B and 
perforin showed a migration pattern above 242 kDa, which was in con-
trast to Teff cells (Fig. 2l,m). The Tex-PSR chaperone gp96 also formed 
more abundant and distinct HMW species in Tex cells, which was not the 
case with cytosolic HSP90α (Fig. 2l,m). The aggregation-prone proteins 
in Tex cells were also enriched in the insoluble fraction (Fig. 2n). Taken 
together, these data indicate that protein quality control is severely 
compromised in Tex cells, which showed a tendency of protein aggre-
gation at the global level.

Misfolded proteins drive exhaustion
An important question is whether protein aggregation is the cause or a 
consequence of T cell exhaustion. We induced protein aggregation in 
T cells using two approaches and then programmed these cells under 
non-exhaustion conditions. First, we treated Teff cells with the l-proline 
analogue l-azetidine-2-carboxylic acid (AZC) (Fig. 3a) to cause protein 
misfolding through the four-membered ring41,42. l-Proline was not 
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depleted in the culture medium to avoid metabolic disruption. After 
6 days of treatment of T cells with AZC, apparent protein aggregation 
was observed (Fig. 3b). Despite culturing T cells in the non-exhaustion 
conditions, AZC treatment caused them to develop into the Tex cell 
state, with a significantly increased PD1+TIM3+ population and impaired 
cytokine production (Fig. 3c,d). As expected, Tex cells were vulner-
able to AZC treatment, with significantly more cell death (data not 
shown). We also analysed AZC-treated cells in the tumour environment. 

OT-1 cells were activated and transiently pulsed with AZC for 3 days 
before adoptive transfer into mice with B16-OVA tumours (Fig. 3e). 
AZC-treated OT-1 cells showed reduced numbers in the tumours and an 
increased SLAMF6–TIM3+ Ttex population (Fig. 3f,g). Second, we geneti-
cally induced the expression of an aggregation-prone and functionally 
inert protein into acutely activated T cells by retroviral transduction 
(Fig. 3h). Cystic fibrosis transmembrane conductance regulator (CFTR) 
is an ion channel protein expressed primarily in epithelial cells, with 
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low levels of expression in T lymphocytes43. Deletion of phenylalanine 
at the 508th position (CFTR(ΔF508)) in human CFTR leads to protein 
misfolding and ER retention44,45. Transduction of the folding-deficient 
mutant CFTR(ΔF508) resulted in the intracellular accumulation of 
CFTR aggregates in mouse CD8+ T cells (Fig. 3i). Moreover, overex-
pression of CFTR(ΔF508) induced bona fide T cell exhaustion with-
out repetitive TCR stimulation (Fig. 3j). CFTR(ΔF508) also increased 
CD39+ populations in acutely activated human CD8+ T cells (Fig. 3k). 
Together, these results suggest that protein aggregation has a causal 
role in T cell exhaustion.

Sustained AKT activity causes exhaustion
We next aimed to elucidate the upstream signalling hub that is respon-
sible for mediating Tex-PSR and promoting T cell exhaustion. We exam-
ined the expression level of components of key signalling pathways 
defined in the Gene Ontology database in our T cell proteome dataset. 
The AKT pathway was specifically upregulated in the late Tex cell popula-
tion (Fig. 4a). Flow cytometry analysis further showed that AKT phos-
phorylation was enhanced in Tex cells (Fig. 4b). Chronic AKT signalling 
was also observed in Tex cells isolated from MC38 tumours (Fig. 4c).

AKT often operates in the same signalling axis as PI3K and mTOR 
and has an important role in mediating T cell proliferation, survival 
and function46,47. Low-dose treatment with the AKT inhibitor MK2206 
(0.2 μM and 1 μM) significantly increased the SLAMF6+TIM3– popula-
tion and cytokine production without impairing cell viability or prolif-
eration (Fig. 4d,e and Extended Data Fig. 9a–d,f). However, treatment 
with the mTOR inhibitor rapamycin or the PI3K inhibitor LY294002 at 
any dose did not block T cell exhaustion, as indicated by the compara-
ble proportion of SLAMF6+TIM3– populations to the untreated group 
(Extended Data Fig. 9c). PI3K and mTOR inhibition also did not rescue 
cytokine production in Tex cells (Extended Data Fig. 9d,f). All inhibitors 
directed cells to differentiate into the CD44+CD62L+ population, which 
validated that the dose levels used had pharmacological activities in 
chronically stimulated T cells (Extended Data Fig. 9e). We therefore 
focused on AKT in subsequent studies. Moderate attenuation of AKT 
signalling was sufficient to reduce the protein synthesis rate in Tex cells 
and to reduce protein aggregation and Tex-PSR chaperone gp96 expres-
sion (Fig. 4f–h). These results strongly suggest that AKT has a key role 
in driving Tex-PSR and T cell exhaustion.

To further determine whether AKT signalling is the upstream driver 
of Tex-PSR and T cell exhaustion, we expressed myristoylated AKT 
(myrAKT), a constitutively active form of AKT, in T cells48,49 (Fig. 4i). 
MyrAKT expression converted Teff cells into Tex cells with a significant 
induction of SLAMF6–TIM3+ terminal exhausted phenotype under 
non-exhaustion conditions (Fig. 4j). This constitutively active AKT 
also upregulated protein translation, increased protein aggregation 
and induced the expression of the PSR chaperone gp96, which are all 
hallmarks of Tex-PSR (Fig. 4k–m). To assess its functional impact, we 
transduced myrAKT into activated OT-1 cells and transferred them into 
mice with B16-OVA tumours. MyrAKT OT-1 T cells were no longer effective 

in controlling the growth of B16-OVA tumours in mice compared with 
wild-type (WT) OT-1 cells (Fig. 4n). MyrAKT-expressing T cells in the 
tumour microenvironment showed less tumour infiltration and more 
exhausted phenotypes compared with control T cells (Fig. 4o,p). We con-
clude that sustained AKT activation drives Tex-PSR and T cell exhaustion.

Tex-PSR chaperones underlie exhaustion
We next asked whether the T cell exhaustion program can be altered 
through the manipulation of Tex-PSR chaperones. We initially 
selected ten genes that encode the following proteins that showed 
increased expression in Tex cells and represent diverse molecular 
functions: ADAM8; annexin A2; cathepsin D (which is associated with 
cell death); ACADL (a fatty acid metabolic enzyme); the cytotoxic 
granzymes granzyme C and granzyme A; the temperature-sensitive 
channel protein TRPV2; and the three chaperone proteins BiP, gp96 
and ERO1A (Extended Data Fig. 10a). The roles of these proteins on 
T cell exhaustion have not been previously defined. We knocked out 
these genes individually by CRISPR–Cas9 after T cell activation and 
then performed repetitive TCR stimulation. Gene deletion was con-
firmed by PCR with reverse transcription (RT–PCR) or flow cytometry 
(Extended Data Fig. 10b,c). Deleting each of the three chaperone genes 
Hspa5, Hsp90b1 and Ero1a with single guide RNAs (sgRNAs sgHspa5, 
sgHsp90b1 and sgEro1a, respectively) significantly enhanced cytokine 
production, whereas individual knockout of the other seven genes had 
minimal effects (Fig. 5a and Extended Data Fig. 10d). Cells deficient in 
BiP, ERO1A or gp96 also showed increased SLAMF6 expression, along 
with reduced levels of TIM3 and CD39 (Extended Data Fig. 10e–g). 
Although chaperone proteins are responsible for facilitating protein 
folding, knocking out Hsp90b1 resulted in the most significant reduc-
tion in protein aggregation, which indicated its potentially pivotal 
role in mediating Tex-PSR-associated protein aggregate formation  
(Fig. 5b).

To validate whether Hsp90b1 deletion has the same effect in 
counteracting T cell exhaustion in vivo, we generated CD8+-specific 
Hsp90b1 knockout (KO: E8i-cre-Hsp90b1flox/flox) and knockdown (Het: 
E8i-cre-Hsp90b1flox/WT, with 50% reduction in gp96 levels) mouse 
models, which were subjected to chronic LCMV clone 13 infection 
(Fig. 5c,d). Thirty days after infection, gp96 expression was upreg-
ulated in antigen-experienced CD8+ T cells from WT mice, with Ttex 
cells demonstrating the highest level of expression (Extended Data 
Fig. 10h). Hsp90b1 deletion resulted in a significant expansion of total 
and antigen-specific CD8+ T cells in spleens (Fig. 5e). There was clear 
evidence of reprogramming of T cells after Hsp90b1 deletion (Fig. 5f,g), 
with enrichment of TCF1+CX3CR1– progenitor cells and CX3CR1+ inter-
mediate populations, along with reduced expression of TIM3 and CD39 
(Fig. 5h,i).

Similarly, we assessed whether deleting chaperone Hspa5 or Ero1a in 
P14 CD8+ T cells improves their antitumour effect in a gp33-expressing 
MB49 tumour model (Fig. 5j). Mice receiving Hspa5 or Ero1a KO P14 
cells showed significantly better tumour control compared with those 

Fig. 4 | Sustained AKT signalling induces Tex-PSR and underlies T cell 
exhaustion. a, Expression levels of proteins in major signalling pathways in  
Teff and Tex cells in vitro as described in Extended Data Fig. 4d. b, Levels of 
phosphorylated AKT (pAKT(Ser473)) in mouse Teff and Tex cells in vitro (n = 3).  
c, pAKT staining in splenic CD8+ T cells and TIL subsets from MC38 tumours (n = 3 
for spleen, n = 6 for TILs, one-way ANOVA). d, Percentages of SLAMF6+TIM3– 
cells in T cells treated with chronic TCR stimulation together with MK2206  
or dimethyl sulfoxide (DMSO) for 6 days (n = 4). e, Percentages of IFNγ+TNF+ 
cells after re-stimulation in T cells treated as in d and rested for 2 days (n = 4).  
f, Quantification of HPG incorporation in T cells treated as in d (n = 4).  
g, Quantification of protein aggregation in T cells treated as in d (n = 4). h, gp96 
expression in Tex cells treated with MK2206 for 2 days (n = 3). i, Schematic  
of packaging MSCV-GFP (pMIG) retrovirus expressing myrAKT for T cell 

transduction, and the flow cytometry quantification of pAKT(Ser473) in  
mouse T cells transduced with myrAKT or EV (n = 3 for EV, n = 4 for myrAKT).  
j–m, Quantification of SLAMF6–TIM3+ cells ( j), HPG incorporation (k), protein 
aggregation by live-cell imaging (l) and gp96 expression (m) in T cells transduced 
with myrAKT or EV (n = 4 ( j,k,m) or n = 9 (l) per group). n, Tumour growth curves 
(two-way ANOVA). OT-1 cells transduced with myrAKT or EV were transferred 
into Rag2–/– mice with B16-OVA tumours. o, Percentages and absolute number 
of OT-1 T cells transduced with myrAKT or EV from tumours 5 days after adoptive 
cell transfer (ACT) (n = 7). p, Percentages of SLAMF6+TIM3– and SLAMF6–TIM3+ 
OT-1 cells from tumours (n = 7). Two-tailed t-test for comparisons between two 
groups. Data are the mean ± s.d. (b–m,o,p) or the mean ± s.e.m. (n). The diagram 
in i was created using BioRender (https://www.biorender.com).
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that received WT P14 cells (Fig. 5k,l). We also analysed the impact of BiP 
deficiency on P14 cells in the tumour microenvironment 5 days after 
adoptive transfer. BiP-null P14 T cells were more enriched in the cytol-
ytic CX3CR1+ population and showed improved stemness, as indicated 

by increased TCF1 expression, compared with WT cells (Fig. 5m,n). 
These data collectively suggest that targeting Tex-PSR chaperones offer 
a potential approach for improving adoptive T cell transfer therapy 
for cancer.
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Clinical relevance of Tex-PSR in cancer
Finally, we investigated the human relevance of Tex-PSR in cancer. We 
performed pan-cancer CD8+ T cell analyses with publicly available 
single-cell transcriptomic datasets that encompass 17 cancer types 
(Extended Data Fig. 11a). These T cells were isolated directly from 
samples taken from patients with cancer and did not have any other 
in vitro manipulations. To determine whether Tex-PSR is also a feature 
of tumour-associated Tex cells in humans, we generated a Tex-PSR sig-
nature based on our in vivo and in vitro proteomic data (Extended Data 
Fig. 11b). The Tex-PSR signature consisted of genes associated with pro-
teostasis regulation that are concurrently upregulated in Tex cells at the 
mRNA and protein levels (Extended Data Fig. 11c). The expression level 
of mRNAs encoding Tex-PSR signature proteins was the highest in Ttex 
cells compared with all other T cell subsets from the tumour samples 
(Extended Data Fig. 11d). We also performed pseudotime trajectory 
analysis based on RNA velocity on pan-cancer CD8+ T cells (Extended 
Data Fig. 11e). We observed two opposing differentiation trajectories: 
effector and exhaustion. The Tex-PSR gene signature appeared early in 
the exhaustion trajectory, which increased proportionally as T cells 
become progressively exhausted (Extended Data Fig. 11f). By contrast, 
Tex-PSR was significantly reduced during the effector trajectory. We 
analysed the Tex-PSR score in CD8+ T cells from patients with liver cancer. 
Patients with a lower Tex-PSR signature in CD8+ T cells showed better 
overall survival (Extended Data Fig. 11g). Moreover, a higher Tex-PSR 
signature in patients with cancer also correlated with poor responses 
to immunotherapies, including both CAR T cells and ICBs (anti-PD1, 
and anti-PD1 with anti-CTLA4) (Fig. 5o and Extended Data Fig. 11h).

Discussion
The question of how protein quality control might differ between T cell 
activation and the exhaustion program has not been clearly answered. 
A key finding of our study was the activation of a distinct PSR in Tex 
cells, which we term Tex-PSR. This PSR is characterized by a high rate of 
protein translation, accumulation of SGs and global protein aggrega-
tion despite increased protein catabolism (Extended Data Fig. 12). The 
high translational rate in Tex cells was not associated with the produc-
tion of functional molecules. Our study provides an explanation to 
this paradox in that many proteins, such as granzymes and perforin, 
in Tex cells aggregate instead of being properly folded, which may be 
a consequence of an overwhelmed protein quality control system. 
We also demonstrated that the introduction of misfolded proteins 
to T cells under optimal conditions for Teff cell differentiation caused 
exhaustion. It has previously been reported50 that tumour cells can 
evade T cell immunity by competing for methionine to alter T cell his-
tone modifications. This result suggests that amino acid metabolism 
might have important roles in regulating T cell function by concurrently 
affecting translation and the epigenetic landscape50. Nonetheless, the 
causal relationship between PSR and Tex suggests that dysregulated 

proteostasis can be a viable target for immunotherapeutic purposes. 
In this regard, it is worth noting that the HSP90 inhibitor ganetespib, 
which also inhibits the Tex-PSR chaperone gp96, has been shown to 
promote ICB efficacy51.

Our work identified AKT signalling as a central regulator of Tex-PSR 
and T cell exhaustion. It is well established that PI3K–AKT–mTOR signal-
ling is essential for T cell activation and differentiation by upregulat-
ing metabolic programs and supporting their bioenergetic needs46,47. 
However, the implications of AKT in T cell exhaustion are controversial 
and under-explored52,53. We demonstrated here that Tex cells maintain 
chronic AKT signalling. Enforced expression of constitutively active 
AKT drives Tex-PSR and a bona fide T cell exhaustion program. We 
therefore posit that AKT signalling is required for T cell survival, but 
its persistent activation disrupts the proteostatic equilibrium, which 
triggers Tex-PSR and promotes exhaustion. Meanwhile, although often 
thought to operate on the same axis, mTOR inhibition by rapamycin 
did not show a substantial effect on preventing T cell exhaustion in 
our study. It may be because mTOR signalling is already suppressed 
in Tex cells47,52,54. The plasticity of these signalling pathways suggests 
that the crosstalk of these signalling hubs in T cell exhaustion warrants 
further investigation.

Another intriguing aspect of Tex-PSR activation in Tex cells is the selec-
tive upregulation of Tex-PSR chaperones. The role of Tex-PSR chaperones 
presents a conundrum here in Tex cells. Previous studies have reported 
that chaperones extend their impact beyond protein folding55–58. 
Moreover, AKT is a known client of HSP90 (ref. 59). Furthermore, ER 
chaperones such as BiP can translocate into the nucleus and function 
as TFs60. It is possible that the actions of Tex-PSR chaperones in Tex cells 
go beyond the fundamental role of protein folding and instead mediate 
signal transduction. An alternative and more simplistic explanation is 
that the chaperone machinery in Tex cells is qualitatively suboptimal 
owing to the upregulation of some but not all chaperones. In Tex cells, 
the Tex-PSR chaperone stoichiometry is in disarray because of chap-
erone imbalance as well as substrate accumulation, which all result in 
pathological proteotoxic stress.

Under chronic stimulation, T cells must navigate a delicate balance 
between effector function and self-survival. We demonstrated that 
modulation of Tex-PSR can enhance effector cytokine production at 
the expense of survival. Meanwhile, maintaining a high rate of protein 
synthesis might be advantageous for Tex cells. This strategy ensures the 
production of essential proteins for their survival, albeit in a manner 
that is not cost-effective. Our study molecularly characterized the 
aggregation proteome. We demonstrated that protein aggregation 
in Tex cells is a global event without selectivity, a result that highlights 
that it is the protein quality control machinery itself that is defective 
in Tex cells. Our findings indicate that increased protein expression of 
T cell effector molecules per se without correcting the pathological 
Tex-PSR in Tex cells will not lead to functional improvement or reversal 
of the exhaustion phenotype. Moreover, we showed that the introduc-
tion of misfolded proteins alone, even in the absence of persistent 

Fig. 5 | Targeting Tex-PSR chaperones prevents T cell exhaustion and 
enhances cancer immunotherapy. a, Frequencies of IFNγ+TNF+ cells (n = 3, 
one-way ANOVA) in cells with indicated genes knocked out. b, Quantification of 
protein aggregation by flow cytometry (n = 4, one-way ANOVA). c, Experimental 
scheme of using CD8+ T cell-specific deletion of Hsp90b1 in mice infected with 
LCMV clone 13. d, gp96 expression in total splenic CD8+ T cells (n = 8 for WT, 
n = 3 for Het, n = 5 for KO, one-way ANOVA). e, Frequencies of total CD8+ (left) 
and gp33-specific and gp276-specific (Tet+) CD8+ T cells (right) in spleens 
30 days after infection (n = 8 for WT, n = 3 for Het, n = 5 for KO, one-way ANOVA). 
f, Uniform manifold approximation and projection (UMAP) of Tet+ CD8+ T cells 
profiled by 25-marker multispectral flow cytometry. g, Expression of selected 
markers mapped on UMAP. h,i, Representative flow cytometry (h) and 
quantification (i) of TCF1+CX3CR1–, CX3CR1+ and TCF1–CX3CR1– cells (n = 8 for 
WT, n = 3 for Het, n = 5 for KO, one-way ANOVA). j, Schematic of ACT using Hspa5 

KO, Ero1a KO or control cells. k, Tumour growth curves (n = 4 for NT, n = 5 for the 
other groups, two-way ANOVA). l, Kaplan–Meier survival curves (n = 4 for NT, 
n = 5 for the other groups, Mantel–Cox test). Results represent three independent 
experiments. m,n, Representative flow cytometry plots (left) and quantification 
(right) of CX3CR1+ percentages (m) and TCF1 expression (n) in tumour-infiltrating 
P14 T cells 6 days after ACT (n = 8, two-tailed t-test). o, Tex-PSR scores in scRNA-seq 
CD8+ T cells from non-responders (NR) and responders (R) to anti-CD19 CAR 
T cell therapy for diffuse large B cell lymphoma61 (left, NR: n = 63,482 cells from 
57 patients; R: n = 59,351 cells from 52 patients) and anti-PD1 therapy for non- 
small cell lung cancer62 and renal cell carcinoma (RCC)63 (right, NR: n = 5,672 
cells from 6 patients, R: n = 37,884 cells from 18 patients). Two-sided Wilcoxon 
rank-sum tests. Data are the mean ± s.d. (a,b,d,e,i,m,n) or mean ± s.e.m. (k,o). The 
diagrams in c and j were created using BioRender (https://www.biorender.com).
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TCR stimulation, effectively induced a T cell exhaustion phenotype. 
Thus, the fate of Tex cells is intricately linked to protein quality control. 
How T cells sense aggregates and subsequently reprogram Teff cells to 
Tex cells remains an open question that warrants further exploration.
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Methods

Cell lines
The MC38 cell line was purchased from Kerafast (ENH204-FP). The 
MB49 cell line was purchased from Sigma-Aldrich (SCC148). The 
HEK293T cell line was purchased from the American Type Culture 
Collection (CRL-3216). The MB49-gp33 cell line was shared by W. Cui 
(Northwestern University). The B16-OVA cell line was generated as 
previously described64 and shared by L. Deng (Memorial Sloan Ket-
tering Cancer Center). HEK293T, MC38 and MB49 cells were cultured 
in Dulbecco’s modified Eagle medium (DMEM; Gibco, 11965-092) with 
10% FBS (Gibco, 10082-147) and 1% penicillin–streptomycin (Gibco, 
15140-122) at 37 °C and 5% CO2. B16-OVA cells were cultured in RPMI-
1640 (Gibco, 11875-093) with 10% FBS and 1% penicillin–streptomycin. 
Cell lines were regularly tested for mycoplasma contamination.

Mice
WT C57BL/6J mice (strain 000664) were purchased from The Jack-
son Laboratory. CD8-specific gp96-deficient mice were generated by 
crossing E8i-Cre mice (The Jackson Laboratory, strain 008766) and 
Hsp90b1flox/flox mice, previously generated and described by our group65. 
The P14 mouse strain was a gift from W. Cui (Northwestern University). 
OT-1 (strain 003831) and Rag2–/– (strain 033526) mice were purchased 
from The Jackson Laboratory. These mice were maintained in the animal 
facility at the Ohio State University under standard conditions (ambi-
ent temperature of 20–24 °C, relative humidity of 30–70% and a 12-h 
dark–light cycle (lights on from 6:00 to 18:00)). Mice aged 6–8 weeks 
were used for experiments. All procedures were performed in strict 
accordance with the recommendations in the Guide for the Care and 
Use of Laboratory Animals of the National Institutes of Health (NIH). 
The protocol was approved by the Committee on the Ethics of Animal 
Experiments of the Ohio State University.

T cell isolation, stimulation and drug treatment
Spleens were isolated from C57BL/6J mice and minced into single-cell 
suspensions. CD8+ T cells were isolated using an immunomagnetic 
negative selection kit (Stemcell, 19853). Isolated CD8+ T cells were first 
stimulated with 3 μg ml–1 plate-bound anti-CD3 (BioLegend, 100359) 
and 1 μg ml–1 anti-CD28 (BioLegend, 102121) antibodies in T cell medium 
made with RPMI-1640 with 10% FBS, 1% penicillin–streptomycin, 1 mM 
sodium pyruvate (Gibco, 11360-070), 1× MEM NEAA (Gibco, 11140-
050), 10 mM HEPES (Gibco, 15630-080) and 50 μM 2-mercaptoethanol 
(Gibco, 21985-023) supplemented with 100 U ml–1 recombinant human 
IL-2 (acquired from the Biological Resources Branch at the NIH) in 
12-well plates at a density of 106 cells per well for 48 h at 37 °C and 5% 
CO2. For chronic stimulation, CD8+ T cells were re-stimulated every 
2 days by passaging to new plates with plate-bound anti-CD3 in T cell 
medium with IL-2. For acute stimulation, CD8+ T cells were passaged 
every 2 days and maintained in T cell medium with IL-2. In some experi-
ments, cells were treated with MK2206 (Cayman, 11593), LY294002 
(Sigma-Aldrich, 440202) or rapamycin (Sigma-Aldrich, 553210) 2 days 
after initial activation and replenished concurrently with cell passage.

To measure cytokine production, activated cells were collected, 
plated and re-stimulated with 0.5× cell stimulation cocktail (Thermo 
Fisher, 00-4970-93) in T cell medium for 3 h at 37 °C and 5% CO2.

Tumour challenge and TIL isolation
For the MC38 tumour model, 1 × 106 cells were subcutaneously injected 
into the right flank of shaved C57BL/6J mice. Mice were euthanized for 
tumour collection 16 days after tumour implantation for cell sorting. 
For the MB49 tumour model, 5 × 105 cells were subcutaneously injected 
into the right flank of shaved C57BL/6J mice. Tumours were collected 
13 days after tumour implantation. To prepare single-cell suspensions, 
isolated tumours were chopped and washed with PBS before incubation 
with collagenase I (200 U ml–1, Worthington, LS004196) in serum-free 

RPMI-1640 for 30 min at 37 °C with gentle agitation. After digestion, 2% 
BSA in PBS was added to cell suspensions to neutralize collagenase. Cell 
suspensions were washed with PBS and filtered through a 70 μm nylon 
filter. Single-cell suspensions were centrifuged and resuspended in PBS 
for downstream assays. For cell sorting, immune cells were enriched 
using a mouse TIL CD45 positive selection kit (Stemcell, 100-0350).

Flow cytometry
Cells were washed with PBS twice. Dead cells were stained using Live/
Dead fixable blue (Invitrogen, L23105) or Zombie UV (BioLegend, 
423108) at 4 °C for 15 min. Cells were washed with FACS buffer twice and 
a surface molecule staining antibody cocktail was applied for 30 min 
at 4 °C. After incubation, cells were washed twice with FACS buffer and 
then fixed and permeabilized using a FOXP3 fixation and permeabiliza-
tion kit (eBioscience, 00-5523-00) overnight. After overnight fixation, 
cells were washed twice in permeabilization buffer and an intracellular 
staining antibody cocktail was added to the cells. After 2 h of incuba-
tion at room temperature, cells were washed twice with FACS buffer 
and analysed using Cytek Aurora. Acquired data were analysed with 
FlowJo software (v.10.10, BD Life Sciences) or OMIQ (Dotmatics) for high 
dimensional analysis. The gating strategy for TIL analysis is provided 
in Supplementary Fig. 2. A list of antibodies used for the multispectral 
flow cytometry study is provided in Supplementary Table 1.

For protein aggregation staining, cells were washed with HBSS 
(Sigma-Aldrich, H6648) twice and stained with 100 nM NIAD-4 (Cay-
man, 18520) or 50 μM CRANAD-2 (Cayman, 19814) in HBSS for 30 min 
at 37 °C and 5% CO2. Cells were stained using Live/Dead fixable Near 
IR (Invitrogen, L34975) at 4 °C for 15 min, followed by fixation (BD 
Biosciences, 554655) for 15 min and DAPI staining for 5 min at room 
temperature. Cells were then analysed by ImageStream for acquiring 
fluorescent images or Cytek Aurora for quantification.

For SG analysis, cells were collected and stained using Live/Dead 
fixable NIR, followed by fixation in BD Cytofix fixation buffer (BD 
Biosciences, 554655) for 15 min and permeabilization using a FOXP3 
fixation and permeabilization kit for 30 min at room temperature. 
Cells were then stained with anti-G3BP1 antibody (Proteintech, 13057-
2-AP) in permeabilization buffer for 1 h at room temperature and then 
FITC-conjugated anti-rabbit antibody for 30 min. DAPI was added to 
the cell suspension and incubated for 5 min. Data were collected by 
ImageStream and analysed using IDEAS (v.6.2). Live cells were gated for 
SG analysis. Cells with SG loci were determined by gating on the Bight 
Detail Intensity feature high population on the FITC–G3BP1 channel.

Protein synthesis rate measurement
Nascent proteins were labelled using a Click-iT HPG Alexa Fluor 488 
Protein Synthesis Assay kit (Thermo Fisher, C10428). Cells were incu-
bated with 50 μM HPG (Thermo Fisher, C10186) in T cell medium made 
with methionine-free RPMI (Gibco, A14517-01) for 30 min at 37 °C and 5% 
CO2. Cycloheximide (Sigma-Aldrich, 239763) was added to the negative 
control group at 50 μg ml–1 to inhibit translation. In some experiments, 
2.5 μM MG132 (Sigma-Aldrich, M7449-1ML) or 10 nM bafilomycin A1 
(Sigma-Aldrich, SML1661) was added to cells after HPG incubation. 
Cells were then labelled following the manufacturer’s protocol and 
analysed using Cytek Aurora.

For measuring translation in TIL subsets in vivo, 50 mg kg–1 OPP (Vec-
tor Laboratories, CCT-1407-25) was administered into tumour-bearing 
mice by intraperitoneal injection. Mice were killed exactly 1 h after 
injection. Tumours were isolated and processed into single-cell suspen-
sions. Cells were stained with surface markers and OPP was labelled 
using a Click-iT reaction kit following the manufacturer’s protocol 
(Thermo Fisher, C10457).

Cell sorting
Single-cell suspensions were stained using Live/Dead fixable blue 
(Invitrogen, L23105) at 4 °C for 15 min. Cells were then washed twice 



with FACS after viability dye staining. Tumour cells were enriched for 
CD45+ lymphocytes using a mouse TIL positive selection kit (Stemcell, 
100-0350) and spleen samples from mice infected with LCMV were 
enriched for CD8+ T cells with a negative selection kit (Stemcell, 19853) 
before viability staining. Cells were then incubated with a surface stain-
ing antibody cocktail for 30 min at 4 °C. Cells were washed twice with 
FACS buffer and filtered through a 70 μm nylon filter immediately 
before loading into a Cytek Aurora CS for sorting. For sorting, a 100 μm 
nozzle was used for tumour-derived samples and a 70 μm nozzle for 
spleen-derived samples.

LCMV infection model
For acute LCMV infection, 8–10-week-old male mice were intraperito-
neally inoculated with 2 × 105 p.f.u. LCMV Armstrong. For chronic LCMV 
infection, 8–10-week-old male mice were intravenously inoculated with 
2 × 106 p.f.u. LCMV clone 13 in 400 µl RPMI-1640. Mice were euthanized 
on day 8 and day 30 after infection.

Gene editing in T cells by CRISPR–Cas9
The sgRNAs targeting each candidate were designed and purchased 
from IDT. The sequences of sgRNAs are provided in Supplementary 
Table 2. Two days before electroporation, splenic CD8+ T cells were 
isolated and activated with 3 μg ml–1 plate-bound anti-CD3 and 1 μg ml–1 
anti-CD28 antibodies in T cell medium supplemented with 100 U ml–1 
IL-2. On the day of electroporation, RNPs were assembled by mixing 
1.5 μl sgRNA and 1 μg Cas9 nuclease V3 (IDT, 1081059) and incubated 
at room temperature for 20 min. Electroporation was prepared using 
a P4 Primary Cell 4D-Nucleofector kit (Lonza, V4XP-4032). The acti-
vated T cells were washed with PBS twice and resuspended with P4 
nucleofector solution with supplement provided by the kit. RNPs and 
1 μl HDR Enhancer (IDT, 10007921) were added to the cell suspensions. 
The reaction mix was loaded into a Nucleocuvette after incubation at 
room temperature for 2 min. 4D-Nucleofector and program CMT137 
were used for electroporation. Cells were rested in T cell medium 
with 50 U ml–1 IL-2 for 2 days and received re-stimulation every 2 days 
afterwards. At 8 days after electroporation, cells were collected for 
downstream analyses.

Protein electrophoresis and western blotting
Cells were pelleted and lysed in NP-40 buffer (50 mM Tris 7.4, 150 mM 
NaCl, 1% NP-40 and 0.1% sodium deoxycholate) supplemented with 
protease and phosphatase inhibitor cocktail (Thermo Fisher, 78440) 
and incubated on a roller for 30 min at 4 °C. Samples were centrifuged 
at 18,000g, 4 °C for 15 min and supernatant was transferred to fresh 
tubes as the detergent-soluble fraction. The detergent-insoluble frac-
tion was resuspended in NP-40 buffer supplemented with 4% SDS. The 
protein concentration was quantified using a BCA assay (Pierce, 23227).

Native samples were diluted with native sample buffer (Thermo 
Fisher, NP) and run on 3–8% Tris-acetate gels (Thermo Fisher, EA0378) 
with Tris-glycine native running buffer (Thermo Fisher, LC2672). Sam-
ples were electrophoresed at 150 V for 3 h at 4 °C. SDS–PAGE samples 
were boiled in NuPAGE LDS sample buffer (Thermo Fisher, NP0007) 
and resolved on 4–12% Bis-Tris gels (Thermo Fisher, NP0335) with MOPS 
SDS running buffer (Thermo Fisher, NP0001). Samples were electro-
phoresed at 150 V for 1 h at room temperature. A list of antibodies used 
for western blot analyses is provided in Supplementary Table 1.

Retrovirus packaging and T cell transduction
The retroviral EV plasmid pMIG and pMIG-myrAKT were purchased 
from Addgene (52107, 65063). The open-reading frame for CFTRΔF508 
was synthesized and cloned into the pMIG plasmid for this study. To 
generate retrovirus for mouse T cell transduction, HEK293T cells were 
transfected with pMIG and pCL-Eco in Opti-MEM. The cell culture super-
natant was collected 48 h after transfection and concentrated overnight 
with Retro-X Concentrator (Takara, 631456). Concentrated retrovirus 

was added onto plates coated with RetroNectin (Takara, T100B) and 
spun at 1,800g at 32 °C for 2 h. Virus supernatant was removed after 
centrifugation and washed with PBS twice. Polyclonal, P14 cells and 
OT-1 CD8+ T cells that have been activated for 16–48 h were added to 
the virus-coated plate and cultured for 24 h. Cells were washed twice 
and plated into new plates for another 3–6 days for downstream analy-
ses. For the generation of retrovirus for human T cell transduction, a 
similar approach to that used for mouse cells was used, with the key 
modification of using the Plat-A cell line for virus packaging. To trans-
duce human CD8+ T cells, CD8+ T cells were magnetically isolated from 
peripheral blood mononuclear cells (Stemcell, 17953) and activated 
with Dynabeads (Gibco, 11131D) for 1 day. After activation, the cells were 
transduced with the indicated virus. In brief, the cells were spinoculated 
at 1,000g in a RetroNectin-virus-coated plate. After 24 h, the virus was 
removed, and subsequent analyses were performed after an additional 
6–8 days of activation and maintenance.

ACT experiment
P14 cells were isolated from the spleens of P14 mice and activated with 
1 μg ml–1 gp33 peptide. Two days after activation, cells were edited by 
CRISPR–Cas9 as described above and expanded for another 2 days with 
100 U ml–1 IL-2. Next, 1 × 106 P14 cells were intravenously transferred per 
mouse. Then 5 × 105 MB49-gp33 cells were subcutaneously injected 
into the right flank of shaved WT C57BL/6J mice or Rag2–/– mice. WT 
mice were lymphodepleted using 5 Gray of total body irradiation on 
the day before cell transfer and randomized for treatment groups. OT-1 
cells were activated and transduced with retroviral vector as described 
above. Transduced OT-1 cells were purified by cell sorting on the basis of 
positive GFP expression. In total, 2.5 × 105 OT-1 cells were intravenously 
transferred to B16-OVA tumour-bearing Rag2–/– mice. For OT-1 ACT 
experiments, 5 × 105 cells B16-OVA cells were subcutaneously injected 
into the right flank of Rag2–/– mice 8 days before adoptive transfer and 
randomized into treatment groups.

Immunofluorescence analysis by confocal microscopy
T cells were collected and spun onto glass coverslips in a 12-well plate. 
For protein aggregation staining, cells were stained with NIAD-4 and 
fixed as described above. For CFTR staining, cells were fixed with fixa-
tion buffer (BD, 554655) for 15 min, permeabilized with 0.5% Triton 
X-100 in PBS for 20 min and blocked with 2% BSA for 1 h. Cells were 
stained with primary anti-CFTR antibody (Proteintech, 20738-1-AP) 
and then Alexa Fluor 647-conjugated goat anti-rabbit IgG antibody 
(Thermo Fisher, A-21244). After staining, coverslips were mounted 
onto glass slides with mountant and DAPI (Thermo Fisher, P36962). 
Images were taken using an Olympus FV3000 microscope with ×60 
magnification and processed with Olympus OlyVIA (v.4.2). For analysis, 
images were imported into ImageJ as .tiff files and adjusted to RGB stack 
format for downstream processing. Thresholds for positive detection 
of aggregates were determined through normalized autodetection 
and maintained across all images with a lower threshold of 100 and 
an upper threshold of 255 to generate binary image masks. The area, 
average size per particle, percentage of area and mean fluorescence 
intensity were analysed using the Analyze Particles function selected 
for area, area fraction, fluorescence intensity, particle count and aver-
age particle size.

MS sample processing
Cell samples were collected and washed with PBS once. Cell pellets 
were frozen at −80 °C if not immediately processed. Cells were lysed in 
lysis buffer made with 5% SDS (Thermo Fisher, AM9820), 50 mM TEAB 
(Thermo Fisher, 90114) and 2 mM MgCl2 (Thermo Fisher, AM9530G) 
with HALT protease inhibitor cocktail (Thermo Fisher, 78441). Lysates 
were homogenized using either a probe sonicator or a Biorupter. DNA 
was removed by centrifugation at 13,000g for 10 min and the pellet 
discarded. For in vitro cell samples, the protein concentration was 
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quantified using a BCA assay (Pierce, 23227) and 50 μg protein of each 
sample was used for subsequent steps. For in vivo samples, total lysates 
were used assuming accurate FACS cell counts. Cell lysates were then 
treated with 20 mM DTT (Sigma-Aldrich, 10197777001) at 95 °C for 
10 min, followed by the addition of 40 mM iodoacetamide (Pierce, 
A39271) at room temperature for 30 min in the dark and then quenched 
with 20 mM DTT for 15 min at room temperature. Phosphoric acid (1.2%; 
Sigma-Aldrich, 345245) was used to acidify proteins. Binding buffer 
with 100 mM TEAB in methanol (Thermo Fisher, A4581) was added to 
samples that were then loaded onto S-traps (ProtiFi, C01-micro-80) 
and washed with binding buffer 3 times. Proteins were digested with 
trypsin (Pierce, 90058) at 47 °C for 2 h. Digested peptides were eluted 
from S-traps with 0.2% formic acid (Thermo Fisher TS-28905) followed 
by a second elution with 50% acetonitrile (Sigma-Aldrich, T7408) in 0.2% 
formic acid. Eluates were pooled and lyophilized for storage at −80 °C.

MS acquisition
Peptides were reconstituted with 2% acetonitrile in 0.1% formic acid 
and separated using either an Easy-nLC 1200 coupled to an Thermo 
Exploris 480 tandem mass spectrometer (Thermo Fisher) or an UltiMate 
3000 UHPLC coupled to a Thermo Fusion tandem mass spectrometer 
(Thermo Fisher). In both set ups, peptides were first desalted online 
using an Acclaim PepMap 100 Trap column (75 μm inner diameter, 
150 mm length, 3 μm C18 packing) and then separated and ionized 
using either a 50 cm (Easy-nLC) or 25 cm (Ultimate 3000) Easy-Spray 
HPLC column (75 μm inner diameter, 2 μm C18 packing) with a 90-min 
linear gradient.

All data-independent acquisition (DIA) measurements were con-
figured in a staggered window pattern using boundaries optimized to 
place window boundaries in forbidden zones. The Thermo Fusion was 
configured to use two DIA injections (covering peptide precursors from 
400 to 700 m/z and from 700 to 1,000 m/z) of 38 ×8 m/z-wide windows 
in a staggered window pattern. These windows were configured to have 
17,500 resolution and an automatic gain control (AGC) target of 4 × 105. 
Precursor spectra were placed every 38 scans (1 per cycle) using 35,000 
resolution and an AGC target of 4 × 105. Similarly, the Thermo Exploris 
480 was configured to use single-injection DIA measurements (cover-
ing peptide precursors from 400 to 1,000 m/z) of 38 × 16 m/z-width 
windows. These windows were configured to have 30,000 resolution 
and an AGC target of 1 × 106. Precursor spectra were placed every 38 
scans (1 per cycle) using 60,000 resolution and an AGC target of 1 × 106.

For each dataset, a sample pool was made from subaliquots and 
used for library generation. We used gas-phase fractionation (GPF) 
DIA following the chromatogram library approach66,67. For this, we 
injected each peptide pool 6 times using different 100 m/z regions 
(400–500 m/z, 500–600 m/z, 600–700 m/z, 700–800 m/z, 800–
900 m/z and 900–1,000 m/z). Each injection was configured to use 
4 m/z staggered DIA windows and appropriate precursor windows. 
Otherwise, all measurements were performed as for normal DIA above 
on their respective instrument.

Proteomic data analysis
Raw files were demultiplexed using MSConvert in the Proteowiz-
ard package (v.3.0.20169)68 and then searched using EncyclopeDIA 
(v.2.12.31). EncyclopeDIA was configured with the default settings for 
Orbitraps: 10 ppm precursor, fragment and library tolerances. Encyclo-
peDIA was allowed to consider both B and Y ions, and trypsin digestion 
was assumed. Searches were performed using a two-step procedure. 
First, the GPF-DIA injections were searched using a Prosit69,70 predicted 
spectrum library to generate a chromatogram library based on the Mus 
musculus UniProt FASTA database (downloaded on 22 October 2019, 
containing 17,025 entries). All z = +2 or z = +3 peptides from 396.4 to 
1002.7 m/z (with a maximum of one missed cleavage) were predicted 
assuming a normalized collision energy of 33. Peptides detected in the 
six GPF-DIA injections at a 1% peptide-level false discovery rate (FDR) 

were compiled into the chromatogram library. Quantitative DIA injec-
tions were searched against this chromatogram library, again filtered 
to a 1% peptide-level FDR. A normalized protein expression matrix for 
all proteomics generated in this study is provided in Supplementary 
Table 3. Bubble plots of protein expression were generated using the 
R package tidyverse (v.1.3.1)71 based on z score-normalized protein 
expression values. Gene set enrichment analysis for protein clusters 
was performed using Enrichr72–74.

Bulk RNA-seq sample preparation and data analysis
Acutely and chronically stimulated T cells were collected on day 8 after 
initial activation. Cells were washed with PBS twice and pelleted. RNA 
was first extracted using TRIzol and chloroform and then cleaned up 
using a RNeasy Micro kit (Qiagen, 74004). Sample library prepara-
tion and sequencing were performed by Azenta Life Sciences. Poly(A) 
selection was used for library preparation. Sequencing was performed 
using an Illumina NovaSeq platform with a depth of 50 million reads 
per sample. The raw bulk sequences were checked, trimmed and fil-
tered using Fastp (v.0.23.4)75. The filtered reads were mapped to the 
mouse reference genome mm10 using HISAT2 (v.2.2.1)76, and samtools 
(v.1.17)77 was used to convert and sort BAM files. Last, the subread tool 
(v.2.0.6)78 was used for gene quantification and generating the raw 
expression matrix. Raw expression data were first log-normalized, and 
the R package Limma (v.3.56.2)79 was used to fit the model and perform 
differential expression analysis. To avoid NA values, a pseudo count of 
1 was added to the raw count matrix. Genes with an absolute log[fold 
change] value greater than 1.5 and FDR-adjusted P value smaller than 
0.05 are considered as differentially expressed genes.

Statistical comparison of protein expression and gene 
expression
To accurately compare protein and gene expression levels, we created a 
hash table (Supplementary Table 4) that included the protein accession 
number, protein name, gene name and Mouse Genome Informatics 
(MGI) number. Each protein and RNA matrix needed to match the hash 
table, and only the overlapped proteins and genes were kept.

We compared the normalized and log-transformed protein expres-
sion and gene expression levels in samples of the sample condition (for 
example, day 8 Tex samples). Only proteins and genes that overlapped 
in both protein and RNA data were retained for comparison. A Pearson’s 
correlation test was applied to calculate the correlation coefficient 
between protein expression and gene expression levels. We also com-
pared the log[fold change] of proteins and genes between different 
conditions. The log[fold change] of proteins and genes were calculated 
in the analysis of differentially expressed genes described above.

We generated a functional gene list to further evaluate the expres-
sion level of proteins and genes undergoing specific cell functions, 
including 13 gene ontology terms, one EIF2A-dependent and one 
EIF2A-independent gene list. Specifically, the EIF2A-dependent 
and EIF2A-independent genes were determined according to the 
EIF2A-regulated upstream open reading frames35. As previously 
described35, EIF2A-regulated upstream open reading frames were 
defined as the ratio of 5′ untranslated region (UTR) translation in con-
trol/5′ UTR translation in Eif2a KO > 4. The remaining mRNAs with a 
ratio <4 were defined as non-EIF2A regulated (EIF2A-independent). 
The 5′ UTR translation rate was quantified for mRNAs with an average 
of more than 16 reads over all replicates. Genes in each of the 26 lists 
are highlighted on the scatter plot to compare the protein and gene 
expression/log[fold change].

Gene signature score analysis
For each of the gene lists mentioned above, we also calculated a gene 
signature score based on the single-sample gene set enrichment 
analysis (ssGSEA) method. An in-house script was used to perform 
the ssGSEA analysis. The R package heatmaply (v.1.4.2)80 or Morpheus 



(https://software.broadinstitute.org/morpheus) was used to draw 
the heatmap. For gene signature score analysis for scRNA-seq data, 
the raw expression matrix of LCMV scRNA-seq data was downloaded 
from GSM3701181 (ref. 31). Cells were divided into three categories 
on the basis of gene expression levels: progenitor state (Slamf6 > 0 
and Cx3cr1 = 0); intermediate state (Cx3cr1 > 0); and terminal state 
(Slamf6 = 0 and Cx3cr1 = 0). Cells in each category were randomly 
divided into three equal subgroups. Pseudo bulk gene expression was 
defined by the average expression of genes in each cell subgroup. Then, 
the same ssGSEA method was performed on the pseudo bulk expression 
data to calculate the gene signature scores and to generate the heatmap.

Pan-cancer scRNA-seq data collection
To construct a comprehensive pan-cancer scRNA-seq dataset, we com-
piled transcriptomic profiles from 346 tumour samples derived from 
251 individuals across 20 publicly available scRNA-seq datasets81–100 
(Supplementary Table 5). To ensure data consistency and to minimize 
platform-related biases, only datasets generated using the 10x Genom-
ics droplet-based platform were included for our analyses.

Quality control and preprocessing of the pan-cancer scRNA-seq 
data. We applied rigorous quality control measures using the pack-
age Scanpy (v.1.9.5)101 to filter and preprocess single-cell transcrip-
tomic data. The following inclusion criteria were applied: (1) each cell  
expressed at least 200 genes; and (2) mitochondrial gene content  
remained below 20% of total counts. Further filtering steps removed 
the following data: (1) low-quality barcodes indicative of debris (<400 
detected genes, <500 unique molecular identifiers); and (2) potential 
duplicate cells (>5,500 detected genes or >30,000 unique molecular 
identifiers). After quality control, raw count matrices and AnnData 
objects were concatenated, and counts were normalized to transcripts 
per million using sc.pp.normalize_total, followed by log-transformation 
with sc.pp.log1p. Non-tumour cells were excluded before normaliza-
tion, which produced 1,030,968 high-quality single cells and 14,090 
genes for downstream analyses.

Batch correction and data integration. To harmonize datasets across 
studies while preserving biological signals, we used the Python package 
scVI (scvi-tools v.1.0.4)102 for batch-effect correction and data integra-
tion. The scVI model was trained with sample identity as a covariate, 
mitigating inter-sample technical variability while ensuring robust 
integration of multiple datasets. The efficiency of batch correction was 
assessed by quantifying the reduction in batch-specific effects while 
maintaining key biological variance. After correction, downstream 
analyses—including clustering, differential gene expression and trajec-
tory inference—were performed on the integrated dataset. UMAP was 
used for visualization, depicting cellular heterogeneity across batches, 
datasets, sex, organ origins and cancer types.

Cell-type annotation of pan-cancer scRNA-seq data. To anno-
tate cell populations, we leveraged the scANVI algorithm (scVI-tools 
v.1.0.4), which provided pre-labelled reference annotations for epi-
thelial, endothelial, fibroblast, lymphoid, myeloid and plasma cells. 
Initial clustering was performed in the scANVI latent space, followed 
by Leiden clustering to assign cell identities. The scANVI model was 
trained with max_epochs=20, and cluster annotations were transferred 
with n_samples_per_label=100. For detailed characterization of T cell 
subpopulations, we further integrated corresponding AnnData objects 
and applied scVI-based batch correction.

Functional signature calculation for scRNA-seq data. We used 
the scanpy.tl.score_genes function from the Python package Scanpy 
(v.1.9.5) to compute gene set scores across individual cells, which 
enabled the quantification of functional signatures in the scRNA-seq 
dataset.

RNA velocity and trajectory inference
RNA velocity analysis was performed to infer the directionality of cel-
lular state transitions using spliced and unspliced transcript counts. 
Velocities were computed using the scVelo toolkit (v.0.3.3)103,104, which 
estimates transcriptional dynamics across single cells. The resulting 
velocity vectors were projected onto the UMAP embedding to visual-
ize the flow of differentiation. To infer developmental trajectories, the 
Slingshot algorithm was applied to the UMAP coordinates, incorporat-
ing RNA velocity information to identify lineage structures. Slingshot 
fit smooth curves (principal curves) through the data and assigned 
pseudotime values along each inferred lineage. Two dominant lineages 
were identified: one progressing towards a Tex cell phenotype (line-
age 1) and the other towards an effector-like phenotype (lineage 2).  
Signature scores for naive, exhaustion and Tex-PSR gene modules were 
calculated across pseudotime for each lineage using averaged normal-
ized expression of predefined marker genes.

Validation of the Tex-PSR signature in CD8+ T cells and its 
prognostic impact
To assess the clinical significance of the Tex-PSR signature in CD8+ T cells, 
we analysed public processed scRNA-seq data from 116 liver cancer 
samples obtained from 94 male patients105. Survival analyses were 
restricted to primary tumours and metastatic samples. After quality fil-
tering, batch correction and cell-type annotation using the established 
preprocessing pipeline, CD8+ T cells were isolated and Tex-PSR signature 
scores were computed using the scanpy.tl.score_genes function from 
the Scanpy package (v.1.9.5).

Tex-PSR signature expression in CD8+ T cells and its impact on  
patient survival. To evaluate the prognostic significance of Tex-PSR 
expression levels in CD8+ T cells, we performed survival analyses using 
Kaplan–Meier curves, with statistical comparisons conducted using 
the log-rank test and univariate Cox proportional hazards (Cox PH) 
models, as specified in each figure. Two additional multivariable Cox 
PH models were fitted to account for potential confounders. The hazard 
ratio and 95% confidence intervals were reported on the basis of these 
models. Kaplan–Meier survival curves were generated to compare 
high versus low Tex-PSR expression in liver cancer scRNA-seq datasets, 
with P values computed using univariate Cox PH models. To determine 
the optimal cut-off value for Tex-PSR signature expression in relation 
to survival outcomes, we used the surv_cutpoint function from the  
R package survminer. This approach uses maximally selected rank 
statistics from the R package maxstat106 to stratify patients into low-risk 
and high-risk groups. Moreover, continuous variables included in the 
Cox PH107 models were assessed for linearity to ensure model validity.

Tex-PSR expression in immunotherapy-treated patients
We further investigated Tex-PSR expression in responders and 
non-responders across independent scRNA-seq datasets from patients 
receiving diverse immunotherapy treatments, including CAR T cell 
therapy for refractory B cell lymphoma61, anti-PD1 therapy for lung 
cancer and advanced renal cell RCC62,63, and anti-CTLA-4 with anti-PD1 
combination therapy for RCC64,108. For each dataset, we applied the 
same preprocessing pipeline, including quality filtering, batch cor-
rection and cell-type annotation, as described for the pan-cancer 
scRNA-seq dataset.

Statistical analysis
Statistical analyses were performed using GraphPad Prism (v.10). 
Two-tailed unpaired Student’s t-test was used for comparison between 
two groups. One-way ANOVA was used for comparisons among three 
or more groups. Two-way ANOVA was used to compare curves of 
time-course studies, including cell and tumour growth curves. P < 0.05 
was considered significant.

https://software.broadinstitute.org/morpheus
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3701181
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Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Proteomic data are available from the MassIVE repository 
(MSV000098609) and through ProteomeXchange (PXD066433). 
Normalized protein expression data are provided in Supplemen-
tary Table 3. Bulk RNA-seq data from this paper have been deposited 
into the NCBI Gene Expression Omnibus database with the identifier 
GSE303401. Source data are provided with this paper.

Code availability
Scripts generated for analysis are available from Zenodo (https://doi.
org/10.5281/zenodo.16323779)109.
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Extended Data Fig. 1 | Study of the proteome changes during T cell exhaustion 
using an in vitro exhaustion model and quantitative mass spectrometry.  
a, Schematic diagram of generation of mouse CD8+ Tex cells in vitro by repetitive 
TCR stimulations followed by parallel bulk RNA-seq and mass spectrometry.  
b, Proliferation and viability of Teff and Tex cells during the 8-day course post 
initial activation (n = 4, two-way ANOVA). c, Representative flow cytometry 
plots and statistics of the percentage of PD-1+TIM-3+ (upper) and IFNγ+TNFα+ 
(bottom) cells over the total CD8+ T cells in Teff versus Tex cells (n = 3, two-tailed 

t test). d, Schematic diagram of the workflow of the chromatogram library-
based data-independent acquisition (DIA) mass spectrometry. e, Expression 
levels of indicated proteins measured by flow cytometry (line) and mass 
spectrometry (scatter-bar). Teff cells were day 3 acutely activated CD8+ cells 
in vitro. Early and late Tex cells were day 3 and day 7 chronically activated CD8+ 
T cells. Data are presented as mean ± SD. Diagrams in a and d were created in 
BioRender. Wang, Y. (2025) https://BioRender.com/n0ibmgq.

https://BioRender.com/n0ibmgq


Extended Data Fig. 2 | Association as well as discordance between RNA  
and protein expression level in T cells. a, Correlation of RNA and protein 
expression levels of all detected molecules in Teff and Tex cells 8 days post 
initial activation. Each dot represents one molecule. A regression line with a 
shaded 95% confidence interval is shown. (r: Pearson correlation coefficient). 
b-c, Correlation between RNA levels and protein expression fold changes of 
molecules across one customer gene set and seven different gene ontologies 

between Tex and Teff cells (r: Pearson correlation coefficient; n: numbers of 
proteins/genes mapped to each gene ontology, A regression line with a shaded 
95% confidence interval is shown). d, Bar plots of protein and mRNA expression 
changes of selected transcription factors in Tex vs Teff cells. e, Bar plots of 
protein and RNA expression changes of molecules belonging to the indicated 
gene ontologies in Tex vs. Teff cells.



Article

Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | Study of T cell exhausion using an antigen-specific 
system against LCMV. a, Gating strategies for sorting antigen-specific CD8+ 
T cells into different subpopulations from the spleens of LCMV infected mice. 
Tet, tetramer. b, Heatmap of expression levels of 17 gene signatures in gp33+ 
T cell subpopulations on day 30 post LCMV Clone 13 infection (the scRNA-seq 
data were from Zander et al.). Tprog, Tint, Ttex subpopulations were determined 
based on their expression level of Slamf6 and Cx3cr1. c, Schematic diagram of 
longitudinal proteome analysis of P14 T cells transferred to mice and harvested 

8, 15 and 30 days after infection with LCMV Armstrong or Clone 13. Created in 
BioRender. Wang, Y. (2025) https://BioRender.com/n0ibmgq. d, Heatmap of 
expression levels of proteins belonging to different T cell signatures in P14 
T cells from LCMV Armstrong or Clone 13 infected mice. e, Expression dynamics 
of protein chaperones in P14 cells analyzed as in c (n = 4, two-tailed t test). Data 
are presented as box plots displaying the median (center line), 25th and 75th 
percentiles (bounds of the box), and minimum and maximum values (whiskers).

https://BioRender.com/n0ibmgq
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Extended Data Fig. 4 | See next page for caption.



Extended Data Fig. 4 | Mass spectrometry-based quantitative proteomics 
uncovers proteome changes during T cell exhaustion. a, Bubble plot of  
the expressions of proteins associated with T cell stemness, activation and 
exhaustion. Bubble color intensity is proportional to protein expression level. 
Bubble size is proportional to the absolute z-score value. b, Enrichment analysis 
of proteins in cluster 1–5 and 7, 8 by Enrichr (one-sided Fisher’s exact test with 
Benjamini–Hochberg correction). Cluster 6 data was show in main Fig. 1. Top 10 
significant gene ontologies are shown. c, PCA analysis of the proteome of 

in vitro-generated Teff and Tex cells at indicated time points. d, Schematic 
diagram of generating Teff, early and late Tex in vitro. Created in BioRender. 
Wang, Y. (2025) https://BioRender.com/n0ibmgq. e, Gene set enrichment 
analysis of differentially expressed proteins in early Tex versus Teff (top) and 
late Tex versus Teff cells (bottom). f, Volcano plots of differentially expressed 
proteins in late Tex versus Teff cells (two-sided t-tests with Benjamini–Hochberg 
correction). Proteins belonging to GO term “Responses to ER stress” are colored.

https://BioRender.com/n0ibmgq
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Extended Data Fig. 5 | Exhausted T cells do not have expected features of 
translational attenuation. a, Bar plot of protein and RNA expression changes 
of IRES motif-containing genes in Tex vs Teff cells 8 days post initial activation 
from the in vitro exhaustion model. b, Correlations of RNA and protein 
expression fold changes of EIF2A-dependent and EIF2A-independent genes in 
Tex vs Teff cells. A regression line with a shaded 95% confidence interval is 
shown. c, Enrichment analysis by Enrichr on proteins showing upregulation in 
both RNA and protein level (circled, left) in Tex versus Teff cells (one-sided 
Fisher’s exact test with Benjamini–Hochberg correction). A regression line with a 
shaded 95% confidence interval is shown in the left panel. d, PDCD4 expression 
across different CD8+ T cells subpopulations from in vitro exhaustion and 
in vivo tumor models by mass spectrometry (n = 5 for in vitro model, n = 3 for 
MC38 and MB49 tumor models, one-way ANOVA). Data are presented as mean 

(center line) and min to max (box bounds). e, The left panel is the heatmap of 
protein expression levels associated with selected Gene Ontology (GO) terms 
in in vitro-generated Teff and Tex cells 8 days post initial activation. Gene  
Set Enrichment Analysis (GSEA, right) compares Tex versus Teff cells, with 
normalized enrichment score (NES), gene rank distribution, and associated 
unadjusted P values are shown. P values were estimated using an adaptive 
multi-level split Monte Carlo scheme. f, Volcano plots of differentially expressed 
proteins in Tex versus Teff cells. Red: translation-related proteins; Blue: 
transcription-related proteins; Grey: other proteins (two-sided t-tests with 
Benjamini–Hochberg correction). g, Mass spectrometry analysis of protein 
expression levels of RPL13, eIF4E and eEF2 (n = 3 for Teff and n = 4 for Tex, 
two-tailed t test).



Extended Data Fig. 6 | Protein synthesis is upregulated in exhausted T cells 
in both tumor and chronic LCMV infection models. a, Volcano plots of 
differentially expressed proteins in P14 T cells from LCMV acute and chronic 
infections as described in Extended Data Fig. 3c. Proteins belonging to the 
protein translation (GO:0006412) are colored in red. b, eIF2D and eIF4G3 
expression in P14 T cells from LCMV acute and chronic infections (n = 4, multiple 

t test). Data are presented as box plots displaying the median (center line),  
25th and 75th percentiles (bounds of the box), and minimum and maximum 
values (whiskers). c-d, Flow cytometry histogram and bar plot of 30-min HPG 
incorporation ex vivo in tumor-infiltrating CD8+ T cell subpopulations from 
mouse MC38 (c) and MB49 (d) tumors (spleen: n = 4, TIL: n = 7, one-way ANOVA). 
Data in c and d are presented as mean ± SD.

http://amigo.geneontology.org/amigo/term/GO:0006412
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Extended Data Fig. 7 | Stress granules, proteasomal and lysosomal activities 
are increased in Tex cells. All experiments were performed using mouse Teff 
and Tex cells generated in vitro 8 days post initial activation. a, ImageStream 
analysis of G3BP1 stress granules (SGs) in Teff and Tex cells. b, Quantification of 
the frequency of G3BP1 SGs in Teff and Tex cells determined with Bright Detail 
Intensity by ImageStream analysis. At least 2,000 live cells were examined for 
each replicate (n = 4, two-tailed t test). c, Flow cytometry quantification of 
G3BP1 expression in Teff and Tex cells (n = 4, two-tailed t test). d, Representative 
flow cytometry plots and statistics of G3BP1 expression in G3bp1 knockout and 
control wild-type Tex cells (n = 4, two-tailed t test). e, Representative flow 

cytometry plots and statistics of the percentage of IFNγ+TNFα+ cells out of the 
total CD8+ T cells in G3bp1 knockout and wild-type Tex cells (n = 4, two-tailed  
t test). f, Viability of G3bp1 knockout and wild-type Tex cells (n = 4, two-tailed  
t test). g, Proteasomal activity in Teff and Tex cells (n = 4, two-tailed t test). h, Flow 
cytometry quantification of lysosome mass in Teff and Tex cells (n = 6, two-tailed  
t test). i, Degradation kinetics of newly synthesized proteins in Teff and Tex cells 
(n = 3). j, Fold changes of HPG MFI 8 h post “pulsing” with MG132, Bafilomycin 
A1(BafA1) or DMSO in Tex cells (n = 5, one-way ANOVA). Data in b-h and j are 
presented as mean ± SD. Data in i are presented as mean ± SEM.



Extended Data Fig. 8 | Effector molecule granzyme B but not inhibitory 
receptor PD-1 is enriched in insoluble aggregates of Tex cells. a, Schematic 
diagram of fractionate soluble and insoluble proteins in the cell lysates of Teff 
and Tex cells 8 days post initial activation in vitro for mass spectrometry analysis. 
Created in BioRender. Wang, Y. (2025) https://BioRender.com/n0ibmgq.  
b, Representative chromatograms of the retention time and intensity for 
peptides indicative of granzyme B in insoluble and soluble protein. Raw 
intensity is on the y-axis and retention time in minutes is on the x-axis. Each 
colored line represents a fragment ion associated with the peptide for 

granzyme B. Solid lines indicate fragment ions used for quantitation. Dotted 
lines represent interfering ions that were excluded for quantitation. The plot 
on the far right showed the fold change of granzyme B in the insoluble over 
soluble fractions in Tex and Teff cells. ΔΔ: Tex[Log2FC(insoluble/soluble)] - 
Teff[Log2FC(insoluble/soluble)]. c, Representative chromatograms of the 
retention time and intensity for peptides indicative of PD-1 in the insoluble  
and soluble fractions. The fold changes of PD-1 in the insoluble over soluble 
fractions in Tex and Teff cells are also shown.

https://BioRender.com/n0ibmgq
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Extended Data Fig. 9 | Moderate attenuation of Akt signaling but not PI3K 
and mTOR pathways prevents T cell exhaustion without compromising  
cell survival and proliferation. Mouse CD8+ T cells were first activated in vitro 
for 48 h, followed by chronic TCR stimulation in the presence of various 
pharmacological inhibitors and the final downstream analysis. a-f, Representative 
flow cytometry plots and statistics of the percentages of live cells (a), Ki67+ 

population (b), SLAMF6+TIM-3- population (c), IFNγ+TNFα+ population (d), 
CD44+CD62L+ population (e) and CD107a production (f). For measuring cytokine 
production (IFNγ, TNFα and CD107a), cells were rested for two additional days 
after 6-day treatment and restimulated with PMA/Ionomycin (n = 4, one-way 
ANOVA). Data in a -f are presented as mean ± SD.



Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Impact of deletion of TexPSR chaperones on T cell 
exhaustion. Experiments were performed using in vitro exhausted T cells (a-g) 
and LCMV model in vivo (h). a, Expressions of the 10 candidate proteins in T cell 
exhaustion across 4 differentiation states as described in Extended Data 
Fig. 4d by mass spectrometry (n = 5, one-way ANOVA). Data are presented as 
mean (center line) and min to max (box bounds). b, Confirmation of CRISPR 
knockout of respective genes by RT-PCR. c, Confirmation of CRISPR knockout 
of indicated genes at the protein level by flow cytometry. d, Bar plot of the 
percentage of IFNγ+TNFα+ cells out of the total CD8+ T cells 8 days post CRISPR-
Cas9 knockout of indicated genes and chronic stimulation (n = 3, experiment 
was repeated three times). e, Representative flow cytometry plot and percentages 

of SLAMF6-TIM-3+ population over total live CD8+ T cells after Hspa5, Ero1a or 
Hsp90b1 knockout or control (n = 3, one-way ANOVA). f, UMAP visualization of 
Tex cells with Hspa5, Ero1a or Hsp90b1 knockout or control T cells analyzed 
with 26 markers associated with T cell activation and exhaustion indicated in g 
by multi-spectral flow cytometry. g, Heatmap of expression pattern of 26 markers 
across 12 cell clusters. Data was shown using all concatenated cells. h, gp96 
expression in different Tex subsets gated on CD44+PD-1+ CD8+ T cells from day 
30 LCMV Clone 13 infected wild type mouse spleens. Naïve CD8+ T cells were 
CD44-CD8+ T cells from uninfected mice (n = 5 for naïve CD8+, n = 10 for Tprog , Tint 
and Ttex, one-way ANOVA). Data in b-e and h are presented as mean ± SD.



Extended Data Fig. 11 | See next page for caption.
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Extended Data Fig. 11 | Patients with high TexPSR signature in tumor-
infiltrating T cells do poorly in response to immunotherapy. a, Overview of 
CD8+ T cell counts and subtype distributions across different cancer types 
from integrated analysis of publicly available pan-cancer scRNA-seq datasets. 
Left panel: total number of CD8+ T cells detected in each cancer type, plotted 
on a logarithmic scale. Middle left panel: sample counts in each cancer type, 
plotted on a logarithmic scale. Middle right panel: number of independent 
studies for each cancer type. Right panel: CD8+ T cell subtype proportion. 
BLCA: bladder urothelial carcinoma; BRCA: breast invasive carcinoma; CESC: 
cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL: 
cholangiocarcinoma; CRC: colorectal cancer; GIM: gastric and intestinal 
malignancies; HNSC: head and neck squamous cell carcinoma; LC: lung cancer; 
LIHC: liver hepatocellular carcinoma; OC: ovarian cancer; PAAD: pancreatic 
adenocarcinoma; PDAC: pancreatic ductal adenocarcinoma; PRAD: prostate 
adenocarcinoma; RCC/CRCC: renal cell carcinoma/clear cell renal cell carcinoma; 
STAD: stomach adenocarcinoma; THCA: thyroid carcinoma; UCEC: uterine 
corpus endometrial carcinoma. b, Heatmap showing the expression level of 
TexPSR signature genes across various T cell populations. c, Correlation of RNA 
and protein expression fold changes of TexPSR signature genes between Tex 

versus Teff cells from the in vitro exhaustion model. d, TexPSR signature scores 
across different T cell subpopulations (two-sided Wilcoxon rank sum test).  
e, UMAP embedding of scRNA-seq data from T cells colored by annotated cell 
types. Overlaid are RNA velocity-based trajectories, inferred with the Slingshot 
algorithm, delineating two major differentiation pathways: Trajectory 1 (teal) 
toward exhaustion and Trajectory 2 (orange) toward effector differentiation.  
f. Signature scores along pseudotime for each trajectory. Trajectory 1 (left) 
shows decreasing Naive and increasing Exhaustion and TexPSR scores, consistent 
with an exhaustion trajectory. Trajectory 2 (right) shows dynamic changes  
in TexPSR and Naive scores, indicative of an alternative effector trajectory.  
g, Kaplan-Meier survival curves for patients with liver cancer stratified by high 
vs. low TexPSR signature, calculated from the CD8+ T cell scRNAseq data. P values 
were calculated using a univariate Cox proportional hazards model. h, TexPSR 
scores in scRNA-seq datasets of CD8+ T cells from non-responders (NR) and 
responders (R) in response to αPD-1 combined with αCTLA-4 therapy for RCC 
(NR: n = 5354 cells from 6 patients, R: n = 15207 cells from 9 patients). Data are 
presented as mean ± SEM, and statistical significance was determined using two-
sided Wilcoxon rank sum tests.



Extended Data Fig. 12 | Working model of TexPSR as a mechanistic driver of 
CD8+ T cell exhaustion. The model presented illustrates a cancer cell at the top 
interacting with an exhausted T cell at the bottom through the MHC class I–T 
cell receptor complex. The intracellular events inside of the Tex cells underscore 
key novel findings from the study, which collectively elucidate a proteotoxic 
stress response (PSR) driving T cell exhaustion, a phenomenon we term TexPSR. 
TexPSR is characterized by an elevated rate of protein synthesis, the accumulation 
of intracellular protein aggregates, the upregulation of specific endoplasmic 

reticulum (ER) chaperones, and an accelerated protein catabolism pathway. 
Central to these processes is the sustained activation of AKT signaling, which 
orchestrates this complex proteotoxic environment. These findings not only 
provide deeper insight into the molecular mechanisms of T cell dysfunction 
within the tumor microenvironment but also open avenues for possible 
therapeutic strategies aimed at mitigating TexPSR to restore immune cell 
function in cancer immunotherapy. The figure was reproduced with the 
permission of The Ohio State University.
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