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Chronicinfections and cancer cause T cell dysfunction known as exhaustion. This cell

state is caused by persistent antigen exposure, suboptimal co-stimulation and

a plethoraof hostile factors that dampen protective immunity and limit the efficacy
ofimmunotherapies'™. The mechanisms that underlie T cell exhaustion remain
poorlyunderstood. Here we analyse the proteome of CD8" exhausted T (T,,)
cells across multiple states of exhaustion in the context of both chronic viral
infections and cancer. We show that there is a non-stochastic pathway-specific
discordance between mRNA and protein dynamics between T effector (T) and T,
cells. We identify a distinct proteotoxic stress response (PSR) in T, cells, which we
term T,,-PSR. Contrary to canonical stress responses thatinduce areductionin
proteinsynthesis®, T.,-PSR involves an increase in global translation activity and
anupregulation of specialized chaperone proteins. T,,-PSR is further characterized
by the accumulation of protein aggregates and stress granules and anincrease in
autophagy-dominant protein catabolism. We establish that disruption of proteostasis
alone can convert T cells to T,, cells, and we link T,-PSR mechanistically to persistent
AKT signalling. Finally, disruption of T,,-PSR-associated chaperonesin CD8" T cells
improves cancerimmunotherapy in preclinical models. Moreover, a high T.,-PSR in

T cells from patients with cancer confers poor responses to clinicalimmunotherapy.
Collectively, our findings indicate that T,,-PSR is a hallmark and a mechanistic driver
of T cell exhaustion, which raises the possibility of targeting proteostasis pathways as
an approach for cancerimmunotherapy.

T cell exhaustion represents a hypofunctional state characterized by
reduced effector function and increased inhibitory receptor expres-
sion that arises from persistent antigen exposure and a hostile micro-
environment’. T,, cells observed in cancer fail to eliminate malignant
cells, and this limitation mediates a key mechanism of resistance to
immunotherapies' >, The exhaustion program generates a heterogene-
ous T, cell population. Progenitor T, (T,,.g) cells retain stemness and
self-renewal capacity that respond to immune checkpoint blockade
(ICB) therapies and differentiate into intermediate T (T,,,) cells with
cytolytic capacity®'°. Conversely, terminal T,, (T,.,) cells accumulate
over time and respond poorly to ICB therapies®' . T cell exhaustion
also limits the efficacy of chimeric antigen receptor (CAR) T cell therapy
against solid tumours™™. Consequently, a better understanding of
T cell exhaustion is essential to overcome the limitations of current
immunotherapies.

Although transcriptomic profiling has provided insights into T,
cell biology, mRNA abundance is not always a faithful proxy of protein
expression across various organisms™ % Previous studies have revealed
poor mRNA-protein correlation in T cells regardless of functional
status®* and the importance of post-transcriptional regulation in
T cell differentiation and function?. In this context, a high-resolution
proteomic map of T, cells would be valuable. In this study, we define
the proteomic landscape of T, cells across various settings, including
aninvitro exhaustionmodel, in vivo chronic lymphocytic choriomen-
ingitis virus (LCMV) infection in mice, and colon tumour and bladder
tumour mouse models. We demonstrate that there is pathway-specific
discordance between transcript and protein levels.

Wealso elucidate theintricate layers of protein-level regulation per-
taining toa PSR thatis specific to T, cells. We show that PSRin T, cells
shares similarities to unfolded protein responses and integrated stress

'Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-The James, Columbus, OH, USA. 2Department of Biomedical Informatics, College of
Medicine, The Ohio State University, Columbus, OH, USA. ®Johns Hopkins University, Baltimore, MD, USA. “Department of Microbial Infection and Immunity, College of Medicine, The Ohio State
University, Columbus, OH, USA. *Center for Childhood Cancer, Hematology/Oncology and BMT, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Department of Pediatrics,
The Ohio State University, Columbus, OH, USA. ®Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA. "Department of Surgical Sciences, Uppsala University,
Uppsala, Sweden. ®Division of Medical Oncology, Department of Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA. *e-mail: Zihai.li@osumc.edu

Nature | www.nature.com | 1


https://doi.org/10.1038/s41586-025-09539-1
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-025-09539-1&domain=pdf
mailto:Zihai.li@osumc.edu

Article

responses. However, amarked difference is that PSRin T, cells is char-
acterized by increased global protein synthesis. This T,, cell-associated
PSRsignature, whichwetermT,,-PSR, is further marked by the selective
activation of chaperone proteins such as gp96 (also known as GRP94;
encoded by Hsp90b1) and BiP (encoded by Hspa$5) and the accumula-
tion of protein aggregates that are predominantly driven by sustained
activation of the AKT pathway. The introduction of misfolded proteins
alone could convert T cells to T, cells, which demonstrates the cau-
sality of dysregulated proteostasis in T cell exhaustion. Finally, we
demonstrate that T.,-PSRis also a hallmark of human T, cells in cancer
and that it may contribute to resistance to cancer immunotherapy.

Discordance between RNA and protein levels

To determine whether gene expression levels reflect protein expres-
sionlevelsinT cells, we used anestablished in vitro exhaustion model
thatinducesT cell exhaustionthroughrepeated T cell receptor (TCR)
stimulation®*, We then performed parallel RNA sequencing and
quantitative proteomics by mass spectrometry (MS) (Extended Data
Fig.1a). Compared with acutely activated T cells (T cells), chronically
stimulated cells (T,, cells) exhibited impaired survival, proliferation and
cytokine production, whichwere accompanied by increased expression
levels of exhaustion markers, including PD1and TIM3 (Extended Data
Fig.1b,c). Toimprove detection sensitivity, quantification and repro-
ducibility, we applied the chromatogram library approach for all prot-
eomicdatacollection (Extended DataFig.1d). The expression dynamics
of key activation, exhaustion and stemness markers of T cells, such as
CD25,PD1, CD39 and TCF1, obtained from the MS results aligned well
with data obtained by spectral flow cytometry (Extended Data Fig. 1e).

Wethen ascertained whether transcriptlevels are areliable surrogate
for protein expression levels in T cells. In both T;and T, cells, mMRNA
and protein expression levels were weakly correlated, as indicated
by Pearson’s correlation coefficients of 0.31 and 0.38, respectively
(Extended DataFig.2a). Moreover, the degree of correlation between
RNA and proteinlevels did not seem to be stochastic but were function-
allyrelated (Extended DataFig. 2b,c). Agroup of proteins that exhibited
comparable mRNA and protein expression levels in >300 cancer cell
lines?, termed ‘housekeeping’ in this context, aligned well with RNA
expression levels in T cells (Extended Data Fig. 2b). Proteins involved
inthe regulation of TCR signalling, cell death and cytokine responses
exhibited asimilarly strong correlation with RNA expression levels, with
correlation coefficient values of around 0.7. By comparison, transcrip-
tion factors (TFs) exhibited amoderate correlation between mRNA and
protein expression levels, with some TFs showing detectable changes
exclusively at the protein level, including FOXO1and T-bet (Extended
DataFig. 2c,d). Furthermore, the levels of proteins associated with
metabolic processes, post-transcriptional regulation and epigenetic
regulation aligned poorly with mRNA levels (Extended Data Fig. 2c).
The three major metabolic pathways—glycolysis, oxidative phospho-
rylation and fatty acid metabolism—showed discrepancies between
RNA and protein levels, with most of the changes in mRNA levels not
reflected at the protein level (Extended Data Fig. 2e). These results
underscore the importance of directly defining the proteome rather
thaninferring it from the transcriptome.

PSR and specialized chaperone enrichment

We next generated akinetic proteomiclandscape of T cells during T cell
exhaustion by leveraging the LCMV infection model. Antigen-specific
CD8'T cellsubpopulations were isolated after acute (Armstrong strain)
or chronic LCMV (clone 13 strain) infection and analysed (Fig.1a). The
following endogenous CD8* T cell subpopulations specific for viral anti-
gens (gp33 and gp276) were sorted for MS analysis at days 8 and 30 after
infection: short-lived effector T cells (SLECs), memory precursor effec-
tor cells (MPECs) and central memory (T and effector memory (Ty,,)
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T cells from Armstrong infection; and SLAMF6°CX3CRI1 " T,,,,, CX3CRI*
T,,.and SLAMF6 CX3CR1 T, cells from clone 13 infection (Extended
Data Fig. 3a). We applied a previously defined transcriptomic signa-
ture for T cell exhaustion® to analyse our proteomic data. Notably, in
additiontoincreased expression of protein signatures associated with
exhaustionand pro-apoptosis, T,., cells exhibited amarked enrichment
of proteins inthe PSR pathway (Fig. 1b). We applied the same gene sig-
natures to asingle-cellRNA sequencing (scRNA-seq) dataset of mouse
gp33'CD8' T cells after LCMV clone 13 infection®. The upregulation of
PSRinT,, cellswasreadily discerned at the protein but not the transcript
level (Extended Data Fig. 3b). We also generated a proteomic dataset of
transgenic T cells against a D°-restricted gp33 epitope of LCMV (called
P14) at days 8, 15 and 30 after infection® (Extended Data Fig. 3c). PSR
was similarly upregulated in P14 cells after clone 13 infection but not
Armstrong infection (Extended Data Fig. 3d).

Tofurtherinvestigate proteome dynamics and PSRin T cell exhaus-
tion, we performed proteomic analyses of Tand T,, cells generated
in vitro, which enabled us to achieve increased proteome coverage.
T cells were collected on days 2, 4, 6 and 8 after initial activation to
track proteomic dynamics during T cell activation and exhaustion
as described above (Extended Data Fig. 1a). T cells exhibited distinct
protein expression dynamics depending on the differentiation state
(Fig. 1c). The expression dynamics of key activation, exhaustion and
stemness markers, such as TCF1, SLAMF6, PD1 and TIM3, obtained
by MS analyses aligned well with T cell states (Extended Data Fig. 4a).
Overall, eight distinct clusters of proteins were identified (Fig. 1c and
Extended DataFig. 4b). Notably, proteinsin cluster 6 were specifically
upregulated in T cells, which typically expressed exhaustion markers
such as TIM3, CD39 and LAG3 (Fig. 1c), as well as molecules involved
inprotein transport, modification and quality control (Fig.1d). In par-
ticular, proteins involved in the endoplasmic reticulum (ER) stress
response were significantly increased as T cells became more exhausted
(Fig. 1e). Anincrease in the expression of proteins integral to transla-
tion, transport and quality control in T, cells compared with T cells
indicates that there is an induction of a distinct PSR during the T cell
exhaustion process (Fig. 1e).

We next performed a proteomic study of T cells isolated ex vivo
from the tumour milieu of mouse models of MC38 colon cancer and
MB49 bladder cancer (Fig. If). Antigen-experienced CD44"CD8" T cells
were sorted by flow cytometry into T, Tinc and Ty, cells®" (Fig. 1g).
Inthe MC38 tumour model, the T, population exhibited upregulated
proteins associated with the ER stress response and proteins associ-
ated with autophagy and transport (Fig. 1h). The upregulation of ER
stress proteins was also observedin T cellsisolated from MB49 bladder
tumours (Fig. 1h).

Chaperone proteins are crucial for ensuring protein quality con-
trol. Notably, we observed a heterogeneous expression of chaperones
(Fig.1i). Onthebasis of their expression patterns, we categorized them
into three groups: quiescence, activation and PSR chaperones (Fig. 1i).
The quiescence-related chaperones showed the highest expressionin
naive T cells. The second group of chaperones, compromising cyto-
solic HSP90« and HSP90P, TRiC complex subunits (TCP1a-TCP10)
and mitochondrial chaperone HSP75 (also known as TRAP1), were
induced by TCR stimulation but reduced in T,, cells, which implicated
alink with T cell activation. Conversely, proteins in the third group,
including several ER chaperones such as BiP and gp96, were overex-
pressed in T, cells, which indicated that they may have specialized
rolesin T cell exhaustion. These exhaustion-associated chaperones
were significantly upregulated in the T, cell population from both
MC38 and MB49 tumours (Fig. 1j). We performed additional analyses of
proteomes of LCMV-specific T cells and tracked the expression kinetics
ofthese chaperones during chronicinfection (Extended DataFig. 3c).
Consistently, BiP,gp96 and HSPA13 were upregulated in P14 cells from
mice infected with clone 13, whereas the expression of TRiC complex
subunits was downregulated (Extended Data Fig. 3e). Together, these
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findings indicate that the activation of PSR and the associated upregu-
lation of PSR chaperones areacommon hallmark of T cell exhaustion.

Dysregulated proteostasisin T, cells

Our proteomic dataindicated that PSRis activated in T, cells. We next
examined whether proteostasis in T, cellsis disrupted. We stained T,
and T, cellswith the fluorescent dye NIAD-4 or its derivative CRANAD-2,
which bind to amyloid-like structures enriched in misfolded proteins
and aggregates®. T,, cells showed a significantaccumulation of protein
aggregates compared with T cells (Fig. 2a,b). In tumour-infiltrating
T cells (TILs) isolated from MC38 and MB49 tumours, protein aggre-
gates progressively increased as T cells became more exhausted
(Fig.2c,d). This result suggests that the protein quality control system
issignificantly impaired in T, cells.

The activation of PSR, the upregulation of specialized chaperone
proteins and the accumulation of protein aggregates in T, cells led
us toinitially predict that T cell exhaustion is associated with attenu-
ated translation to prevent further protein overload. However, this
prediction wasincorrect based on the following considerations. First,
proteins withinternal ribosome entry sites (IRES) that are not subject
to EIF2a-mediated translation attenuation should be enriched rela-
tive to proteins without IRES in T,, cells®*. However, this was not the
case (Extended Data Fig. 5a). Second, we did not observe enrichment
of proteins that rely on the alternative translation initiation factor
EIF2A owing to the presence of an unconventional 5’ upstream open
reading frame™ (Extended Data Fig. 5b). Third, proteins with concur-
rent upregulation at RNA and protein levels in T, cells were overrep-
resented in translation initiation, elongation and stress-response
pathways (Extended Data Fig. 5¢). Fourth, levels of the translation
repressor PDCD4 (refs. 36,37) were significantly reduced in T, cells
bothin vitro andin vivo (Extended Data Fig. 5d). Fifth, our proteomic
analysisrevealed an upregulation of translation but not transcriptional
machinery in T,, cells (Extended Data Fig. 5e-g). Proteins involved in
translation were upregulated in T,, cells induced by chronic LCMV
clone 13 infection (Extended Data Fig. 6a). Moreover, the translation
initiation factors EIF2D and EIF4G3 exhibited sustained high expression
in P14 cells from mice with chronic infection but were reduced over
time in mice with acute infection (Extended Data Fig. 6b).

These findings prompted us to directly assess translation rates by
measuring the incorporation of L-homopropargylglycine (HPG), a
methionine analogue, into newly synthesized proteins. Notably, T,
cells exhibited a significantly increased rate of protein synthesis
compared with acutely stimulated T cells (Fig. 2e). We also meas-
ured translation changes in vivo in different TIL subsets by injecting
O-propargyl-puromycin (OPP) into mice with MC38 tumours to label
elongating polypeptide chains during active translation®, T, cells
showed significantly higher OPP incorporationthan T, and T, cells
(Fig. 2f). We validated this result by isolating TILs into single-cell sus-
pensions followed by ex vivo HPG translation assays. This experiment
was performed to further exclude the possibility that different spatial
distributions of T cell subpopulations caused inconsistent access to
OPP. Consistently, T, cellsshowed increased protein translation rates
inboth MC38 and MB49 tumour models (Extended Data Fig. 6¢,d).

Next, we characterized important subcellular events typically asso-
ciated with PSR. Stress granules (SGs) are dynamic, reversible protein
and RNA granules that formunder cellular stress and are evident during
T cell activation®***°, The formation of SGs in T,, cells was increased,
as evidenced by both analyses of morphology and expression of the
SG marker G3BP1 (Extended Data Fig. 7a-c). We further explored the
functional roles of SGs in T, cells. Disruption of SGs by knocking out
G3bpl resulted in an increased production of the cytokines IFNy and
TNF (Extended Data Fig. 7d,e). However, loss of G3bp1 significantly
compromised the survival of chronically stimulated T, cells (Extended
DataFig. 7f).
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T,, cells also exhibited increased proteasome and lysosome activ-
ity (Extended Data Fig. 7g,h). We therefore investigated the kinetics
of global protein catabolismin T, cells. Cells were labelled with HPG
for 30 min, then changed to regular culture conditions without HPG.
Although nascent proteins were produced in high levels, they were
rapidly degradedin T, cells (Extended Data Fig. 7i). This protein catabo-
lismin T, cellswasdrivenlargely by autophagy (Extended DataFig. 7j).

Taken together, these results show that T, cells have a distinct
non-canonical PSR, which we term T, -PSR. T,-PSR is characterized
by the induction of PSR and the formation of SGs, protein aggregate
accumulationandincreased protein catabolism, coupled paradoxically
by enhanced global protein synthesis.

Molecular definition of protein aggregates

We next asked what proteins were prone to aggregationin T, cells. To
that end, we used native gel electrophoresis to analyse the migration
pattern of proteomes (Fig. 2g). On the basis of proteome characteriza-
tion, we focused on the following three differentiation states of T cells:
T.«cells (day 4 acutely activated T cells); early T, cells (day 4 chronically
activated T cells); and late T,, cells (day 8 chronically activated T cells)
(Extended DataFig. 4c,d). Both early and late T, cells showed upregu-
lation of ER stress responses compared with T, cells (Extended Data
Fig.4e,f). To define aggregation-prone proteins, T, early and late T,
cellswerefirst lysed with mild lysis buffer to maintain their native con-
formation followed by high-speed centrifugation to remove nucleoli
and other insoluble materials. Supernatants were then subjected to
native PAGE electrophoresis. Proteins that migrated below 140 kDa (low
molecular weight (LMW) species) and above (high molecular weight
(HMW) species) from the gel were then defined by MS. We detected
and quantified 3,889 proteins, and 2,878 of these proteins (74%) shifted
from LMW to HMW speciesin T, cells. This finding indicated that there
was a large-scale level of protein aggregation in the exhaustion state
(Fig. 2h). We next examined whether proteins associated with specific
pathways were preferentially aggregated in T,, cells. However, there was
nosuch preference, which suggested that protein aggregation occurred
globally (Fig. 2i). Still, effector molecules, including granzyme B, gran-
zyme Cand perforin, in T, cells showed significant enrichmentin HMW
species compared with T, cells (Fig. 2j). The T.,-PSR chaperones gp96
and BiP also showed a trend in moving towards HMW species. Notably,
AKT1did not demonstrate signs of aggregationin T, cells (Fig. 2j). We
alsoresuspended and profiled proteins ininsoluble material through
additional harshlysis (Extended Data Fig. 8a). We observed an enrich-
mentofgranzyme Bin T, cells compared with T.cells (Extended Data
Fig.8b). Theinhibitory receptor PD1, despite being atransmembrane
protein, was retained in the soluble fraction (Extended Data Fig. 8c).

Next, we used immunoblotting to validate the aggregation state of
some of the identified proteins (Fig. 2k). In T, cells, granzyme B and
perforinshowed amigration pattern above 242 kDa, which was in con-
trast to T, cells (Fig. 2I,m). The T.,-PSR chaperone gp96 also formed
more abundant and distinct HMW speciesin T, cells, whichwas not the
casewith cytosolic HSP90a (Fig. 2I,m). The aggregation-prone proteins
in T, cellswere also enriched in the insoluble fraction (Fig. 2n). Taken
together, these data indicate that protein quality control is severely
compromised in T, cells, which showed a tendency of protein aggre-
gation at the global level.

Misfolded proteins drive exhaustion

Animportant questionis whether protein aggregationisthe cause ora
consequence of T cell exhaustion. We induced protein aggregationin
T cellsusing two approaches and then programmed these cells under
non-exhaustion conditions. First, we treated T cells with the L-proline
analogueL-azetidine-2-carboxylic acid (AZC) (Fig. 3a) to cause protein
misfolding through the four-membered ring***2. L-Proline was not



P <0.0001

a b c .
- i P <0.0001
Bright field ER tracker NIAD-4 DAPI Merged P=186x107 — MC38TIL exvivo 1x10 <20
gl g 250,000
3444 = gx10° L
‘ & 200,000 T £ P =00337] -
T @; s & 6x10° g
’ A ~ 150,000 T \ P
2 " L 2 axae
705 2 100,000 Torog é ,
. < - 2x10
N 5 50000 Spleen CD8
o
0 0 10* 10°10° POV
Ter T, CRANAD-2 P A NI
eff ex (\OO
&
QQ\
CD44"CD8*
d  MB49 TIL ex vivo pooooss  ©  f MossTLinvivo P=00074
4x10° — 2.0 x 10° o P=1:63x10 80,000 P =0.0067
3
— : = No OPP
Tiex R £ sx10° i r\-‘ S 15x10° A _. 60,000 15 _ 00166
e b uft g g “ e
Ly N A 2x10° Ton h\ T 1.0x10° g 40,000 g
T S b o] o
£ S T, ¢ © 20000
o 3 ;!
Spleencpg’| & 1x10 = < 50x10°
T T T -1 05 0 105 109 gl T T T
0 10* 10° 0 0 o 10° 10° 10° 0
HPG-AF488 T ToToT
CRANAD-2 & <& AR ot Tex OPP-AF647 wog Tt Ttex
(\OO
g & i
Native PAGE @ | ] I TCR signalling . HMW—LMW
T Tox & [ ] ] ggs::cree:sgnse . HMW LMW HMW
-y s
T I BN Fo-apoptosis LMW HMW-LMW
! UMY ' B < 20 - _ Oxidative phosphorylation LMW—HMW
‘ ‘ 3 ]
140 N - % NF-xB signallin
77777 e X | ] gnalling Not detected
kDA - ; ’_ w > o 10 [ ] Naive
- : (¢ // g2 L \ [ ] ] MAPK signalling
. Lmw ' \ / 20 205 21 [ ] ] IFN response
- ' \j Retention i [~ | L Glycolysis
0 i eten |9n ime _ - Fatty acid metabolism
”””””” (min) .
[ ] Exhaustion
I Cytotoxicity
h log,[fold change (HMW vs LMW)] 2 score I Cytokine or cytokine receptor
i Cluster 1.0 [ ] Chemokine or chemokine receptor
T [ Anti-apoptosis
o 05 H I Anergy
Early T, 0 1 Adhesion
-0.5 ] Activation effector function
Late Toc -1.0 0 025 050 0.75 1.00
Proportion
i GzmB pos K | _ m
85 104 8 10 Native PAGE GzmB Perforin Tor To.
c 8 c 84 _eff  ex
L V- SDS-PAGE e Te T Te Day2 4 6 8 4 6 8
S S% Day2 4 6 8 4 6 8 Day2 4 6 8 4 6 8 37
o2 4] o2 4| GzMB
£z 22 1,048 { o= o v ® R | 1,048 4
o= 2 a= 24 / . -
o= oL - 75 .
553 5 5 5 ouple
= e ‘{
ER:] 5 ®©
w = w = H 100
851017 gz 0, %7 , 480 480 | 75 HsPooa
; ° 6 G, —4 * Biomolecular 146 - 146
s 44 2 ; -6 complexes
53 2] gz 8 * Aggregates 9p96 HSP90G: n
2= ol 2=-10L— T T Toy T,
B 5 AR iy T i iesics
'-29 S Day2 4 6 8 4 6 8 Day2 4 6 8 4 6 8 ay
& 5 5 g 1,048 1,048 4 40 GZMB
Perforin AKT1
§3 81 §s 2 \ Insoluble
52 61 57 -4 100 96
58 o @ * Aggregates 480 4 75 9p!
gz 5z °© 4801 100
=, = ———— - - —
< o | <2 -8 i i~ 242 ——— ——% HSP90
S S 242 75 - o
T ol ST 1ol 146 4 146 - ]
% h SDS-PAGE g7 [ ————
- [ Actin

Early T,
Late T,
Early T,
Late T,

betweenaggregation tendency of proteins and their functional pathways. Bar
coloursdepict the migration pattern of proteins asindicated inh.j, Fold changes
ofindicated protein abundancesin HMW and LMW species. k, Schematic of
celllysate fractionation based on protein solubility. I, Immunoblot analysis of

Fig.2|Chronic TCRstimulation disrupts proteostasis duringT cell
exhaustion. a,ImageStream analysis of proteinaggregatesin Tsand T, cells
8 days afterinitial activationinvitro. Numbers are identifiers of representative
cellswithin the samples. Scale bar, 7 um.b, Flow cytometry quantification of

proteinaggregates (n =8 for Tcand n =7 for T,,, two-tailed t-test). MFI, mean
fluorescenceintensity.c,d, Protein aggregatesin CD8" T cell subpopulations
frommouse MC38 tumours (c) and MB49 tumours (d) (n =4 for spleens,n=7
for TILs, one-way analysis of variance (ANOVA)). e, Flow cytometry histogram
and bar plotof HPGincorporationin Tcand T, cellsinvitro (n = 4, two-tailed
t-test).f, Flow cytometry histogram and bar plot of OPP incorporationin CD8"
T cell subpopulations from mouse MC38 tumours (n=7,one-way ANOVA). g,
Schematic of native PAGE and determination of the proteome by MS. T .and T,
cellswere generated asdescribed in Extended DataFig.4d. h, Heatmap showing
thefold change of 3,889 proteinsin HMW and LMW species. i, Lack of association

granzyme B (GZMB), perforin,gp96 and HSP90a in the soluble fractions of cell
lysates separated by native PAGE. m, Immunoblot analysis of the indicated
proteinsinsoluble fractions separated by SDS-PAGE. n, Immunoblot analysis
oftheindicated proteinsininsoluble fractions resolved by SDS-PAGE. For I-n,
the values on theleft of the blots are kDa. Forimmunoblot source data, see
Supplementary Fig.1. Datain h-jare representative of two independent
experiments. Experimentsinl-nwererepeated atleast three times. Dataare
presented as the mean +s.d. (b-f). The diagramsin g and k were created using
BioRender (https://www.biorender.com).
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Fig.3|Proteinmisfolding promotesT cell exhaustionwithoutchronic TCR
stimulation. a, Structure of L-prolineand its analogue AZC.b-d, Mouse T,
cellsweretreated with AZC for 6 days in vitro 2 days after optimal activation.

b, Confocalimaging analysis (left) and quantification (right) of protein
aggregates (n = 8, two-tailed t-test. Experiments were repeated at least 3 times).
Scalebars, 5pum. ¢, Percentages of PDI'TIM3" cells out of the total live CD8*
Tcells (n =4, two-tailed t-test). d, Percentages of IFNY'TNF" cells over the total
live CD8' T cells (n =4, two-tailed t-test). e, Schematic of adoptive transfer of
AZC-pulsed or vehicle-pulsed OT-1cells into Rag2” mice with B16-OVA tumours.
NT, no transfer. f, Absolute number of tumour-infiltrating OT-1CD8" T cells
normalized by tumour weight (n=6 for NT and n =7 for vehicleand AZC,
one-way ANOVA). g, Percentages of SLAMF6'TIM3™and SLAMF6 TIM3*
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tumour-infiltrating OT-1cells (n = 7, two-tailed t-test). h, Schematic of
introducing amodel aggregation-prone protein, CFTR(AF508), into T, cells by
retrovirustransduction.i, Confocalimaging analysis of CFTR expressionin
cellstransduced with CFTR(AF508) or empty vector (EV).Scalebars, 5 pm.

j, Percentages of PDI'TIM3" cells over total mouse CD8" T cells transduced with
CFTR(AF508) orEV (n=4forEVandn=6for CFTR(AF508), two-tailed t-test).

k, Percentages of CD39" cells out of the total transduced human CD8' T cells

10 days after transduction (n =3, two-tailed t-test. Experiments were repeated
3 timeswith cells from different donors with similar results). Data are presented
asthemean ts.d.(b-d,f,g,j,k). Thediagramsineand hwere created using
BioRender (https://www.biorender.com).
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Fig.4|See next page for caption.

depleted in the culture medium to avoid metabolic disruption. After
6 days of treatment of T cells with AZC, apparent protein aggregation
was observed (Fig. 3b). Despite culturing T cells in the non-exhaustion
conditions, AZC treatment caused them to develop into the T, cell
state, withasignificantly increased PD1'TIM3" population and impaired
cytokine production (Fig. 3¢,d). As expected, T, cells were vulner-
able to AZC treatment, with significantly more cell death (data not
shown). We also analysed AZC-treated cellsin the tumour environment.

OT-1cells were activated and transiently pulsed with AZC for 3 days
before adoptive transfer into mice with B16-OVA tumours (Fig. 3e).
AZC-treated OT-1cells showed reduced numbersin the tumoursand an
increased SLAMF6 TIM3" T, population (Fig. 3f,g). Second, we geneti-
callyinduced the expression of an aggregation-prone and functionally
inert protein into acutely activated T cells by retroviral transduction
(Fig.3h). Cysticfibrosis transmembrane conductance regulator (CFTR)
is anion channel protein expressed primarily in epithelial cells, with
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Fig.4 |Sustained AKT signallinginduces T.,-PSR and underlies T cell
exhaustion. a, Expression levels of proteins in major signalling pathways in
Trand T, cellsinvitroas described in Extended DataFig. 4d. b, Levels of
phosphorylated AKT (pAKT(Ser473)) in mouse Tand T, cellsin vitro (n = 3).

¢, pAKT staininginsplenic CD8' T cellsand TIL subsets fromMC38 tumours (n=3
forspleen, n=6forTILs, one-way ANOVA).d, Percentages of SLAMF6 ' TIM3~
cellsin T cells treated with chronic TCR stimulation together with MK2206

or dimethyl sulfoxide (DMSO) for 6 days (n = 4). e, Percentages of IFNy TNF*
cellsafterre-stimulationin T cellstreated asind and rested for 2 days (n = 4).

f, Quantification of HPGincorporationin T cellstreatedasind (n=4).

g, Quantification of protein aggregationin T cellstreatedasind (n=4).h,gp96
expressionin T, cells treated with MK2206 for 2 days (n = 3).i, Schematic

of packaging MSCV-GFP (pMIG) retrovirus expressing myrAKT for T cell

transduction, and the flow cytometry quantification of pAKT(Ser473) in
mouse T cells transduced with myrAKT or EV (n =3 for EV, n = 4 for myrAKT).
j—m, Quantification of SLAMF6 TIM3" cells (j), HPG incorporation (k), protein
aggregation by live-cellimaging (I) and gp96 expression (m)in T cells transduced
withmyrAKT or EV (n=4 (j,k,m)orn=9(l) per group).n, Tumour growth curves
(two-way ANOVA). OT-1cellstransduced with myrAKT or EV were transferred
into Rag2” mice with B16-OVA tumours. o, Percentages and absolute number
of OT-1T cells transduced with myrAKT or EV from tumours 5 days after adoptive
celltransfer (ACT) (n=7).p, Percentages of SLAMF6'TIM3"and SLAMF6 TIM3*
OT-1cells from tumours (n =7). Two-tailed t-test for comparisons between two
groups. Dataare the mean £ s.d. (b-m,o,p) or the mean + s.e.m. (n). The diagram
iniwas created using BioRender (https://www.biorender.com).

lowlevels of expressionin T lymphocytes*. Deletion of phenylalanine
at the 508th position (CFTR(AF508)) in human CFTR leads to protein
misfolding and ER retention***. Transduction of the folding-deficient
mutant CFTR(AF508) resulted in the intracellular accumulation of
CFTR aggregates in mouse CD8" T cells (Fig. 3i). Moreover, overex-
pression of CFTR(AF508) induced bona fide T cell exhaustion with-
out repetitive TCR stimulation (Fig. 3j). CFTR(AF508) also increased
CD39" populations in acutely activated human CD8" T cells (Fig. 3k).
Together, these results suggest that protein aggregation has a causal
rolein T cell exhaustion.

Sustained AKT activity causes exhaustion

We next aimed to elucidate the upstreamssignalling hub thatis respon-
sible for mediating T,,-PSR and promoting T cell exhaustion. We exam-
ined the expression level of components of key signalling pathways
defined inthe Gene Ontology database in our T cell proteome dataset.
The AKT pathway was specifically upregulated inthe late T, cell popula-
tion (Fig. 4a). Flow cytometry analysis further showed that AKT phos-
phorylationwas enhanced in T, cells (Fig. 4b). Chronic AKT signalling
was also observed in T, cells isolated from MC38 tumours (Fig. 4c).

AKT often operates in the same signalling axis as PI3K and mTOR
and has an important role in mediating T cell proliferation, survival
and function***. Low-dose treatment with the AKT inhibitor MK2206
(0.2 pM and 1 pM) significantly increased the SLAMF6'TIM3™ popula-
tion and cytokine production withoutimpairing cell viability or prolif-
eration (Fig.4d,e and Extended DataFig. 9a-d,f). However, treatment
withthe mTOR inhibitor rapamycin or the PI3K inhibitor LY294002 at
any dose didnotblock T cell exhaustion, asindicated by the compara-
ble proportion of SLAMF6‘TIM3™ populations to the untreated group
(Extended DataFig.9c). PI3Kand mTOR inhibition also did not rescue
cytokine productionin T, cells (Extended DataFig. 9d,f). Allinhibitors
directed cells to differentiate into the CD44*CD62L" population, which
validated that the dose levels used had pharmacological activities in
chronically stimulated T cells (Extended Data Fig. 9e). We therefore
focused on AKT in subsequent studies. Moderate attenuation of AKT
signalling was sufficient toreduce the protein synthesis ratein T, cells
andtoreduce protein aggregationand T,,-PSR chaperone gp96 expres-
sion (Fig.4f-h). These results strongly suggest that AKT has akey role
indriving T,-PSRand T cell exhaustion.

To further determine whether AKT signalling is the upstream driver
of T.-PSR and T cell exhaustion, we expressed myristoylated AKT
(myrAKT), a constitutively active form of AKT, in T cells***° (Fig. 4i).
MyrAKT expression converted T, cells into T, cells with a significant
induction of SLAMF6 TIM3* terminal exhausted phenotype under
non-exhaustion conditions (Fig. 4j). This constitutively active AKT
also upregulated protein translation, increased protein aggregation
and induced the expression of the PSR chaperone gp96, which are all
hallmarks of T,,-PSR (Fig. 4k-m). To assess its functional impact, we
transduced myrAKT into activated OT-1cells and transferred theminto
mice with B16-OVA tumours. MyrAKT OT-1T cells were no longer effective
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in controlling the growth of B16-OVA tumours in mice compared with
wild-type (WT) OT-1cells (Fig. 4n). MyrAKT-expressing T cells in the
tumour microenvironment showed less tumour infiltration and more
exhausted phenotypes compared with control T cells (Fig. 40,p). We con-
cludethatsustained AKT activationdrives T.,-PSRand T cell exhaustion.

T..-PSR chaperones underlie exhaustion

We next asked whether the T cell exhaustion program can be altered
through the manipulation of T.,-PSR chaperones. We initially
selected ten genes that encode the following proteins that showed
increased expression in T, cells and represent diverse molecular
functions: ADAMS; annexin A2; cathepsin D (which is associated with
cell death); ACADL (a fatty acid metabolic enzyme); the cytotoxic
granzymes granzyme C and granzyme A; the temperature-sensitive
channel protein TRPV2; and the three chaperone proteins BiP, gp96
and ERO1A (Extended Data Fig. 10a). The roles of these proteins on
T cell exhaustion have not been previously defined. We knocked out
these genes individually by CRISPR-Cas9 after T cell activation and
then performed repetitive TCR stimulation. Gene deletion was con-
firmed by PCRwith reverse transcription (RT-PCR) or flow cytometry
(Extended DataFig.10b,c). Deleting each of the three chaperone genes
Hspa$, Hsp90b1 and Erola with single guide RNAs (sgRNAs sgHspas,
sgHsp90b1 and sgErola, respectively) significantly enhanced cytokine
production, whereas individual knockout of the other seven genes had
minimal effects (Fig. 5a and Extended Data Fig.10d). Cells deficient in
BiP, ERO1A or gp96 also showed increased SLAMF6 expression, along
with reduced levels of TIM3 and CD39 (Extended Data Fig. 10e-g).
Although chaperone proteins are responsible for facilitating protein
folding, knocking out Hsp90b1 resulted in the mostsignificant reduc-
tion in protein aggregation, which indicated its potentially pivotal
role in mediating T,,-PSR-associated protein aggregate formation
(Fig. 5b).

To validate whether Hsp90b1 deletion has the same effect in
counteracting T cell exhaustion in vivo, we generated CD8"-specific
Hsp90b1 knockout (KO: ESi-cre-Hsp90b ") and knockdown (Het:
ES8i-cre-Hsp90b1""7 with 50% reduction in gp96 levels) mouse
models, which were subjected to chronic LCMV clone 13 infection
(Fig. 5c,d). Thirty days after infection, gp96 expression was upreg-
ulated in antigen-experienced CD8" T cells from WT mice, with T,
cells demonstrating the highest level of expression (Extended Data
Fig.10h). Hsp90b1 deletion resulted in a significant expansion of total
and antigen-specific CD8" T cells in spleens (Fig. 5e). There was clear
evidence of reprogramming of T cells after Hsp90b1 deletion (Fig. 5f,g),
with enrichment of TCF1"CX3CR1 progenitor cellsand CX3CR1" inter-
mediate populations, along withreduced expression of TIM3 and CD39
(Fig. Sh,i).

Similarly, we assessed whether deleting chaperone Hspa5 or Erolain
P14 CDS8' T cellsimproves their antitumour effectin a gp33-expressing
MB49 tumour model (Fig. 5j). Mice receiving Hspa$5 or Erola KO P14
cells showed significantly better tumour control compared with those
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Fig.5|See next page for caption.

thatreceived WT P14 cells (Fig. 5k,1). We also analysed the impact of BiP
deficiency on P14 cells in the tumour microenvironment 5 days after
adoptive transfer. BiP-null P14 T cells were more enriched in the cytol-
ytic CX3CR1*population and showed improved stemness, as indicated

by increased TCF1 expression, compared with WT cells (Fig. 5m,n).
These datacollectively suggest that targeting T,,-PSR chaperones offer
a potential approach for improving adoptive T cell transfer therapy
for cancer.
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Fig.5| Targeting T.,-PSR chaperones prevents T cell exhaustionand
enhances cancerimmunotherapy. a, Frequencies of IFNY'TNF* cells (n =3,
one-way ANOVA) incells withindicated genes knocked out. b, Quantification of
protein aggregation by flow cytometry (n =4, one-way ANOVA). ¢, Experimental
scheme of using CD8" T cell-specific deletion of Hsp90b1 in mice infected with
LCMV clone13.d, gp96 expressionintotal splenic CD8" T cells (n =8 for WT,
n=3forHet,n=5forKO, one-way ANOVA). e, Frequencies of total CD8" (left)
and gp33-specific and gp276-specific (Tet") CD8" T cells (right) in spleens

30 days after infection (n=8for WT, n =3 for Het, n = 5for KO, one-way ANOVA).
f, Uniform manifold approximation and projection (UMAP) of Tet" CD8' T cells
profiled by 25-marker multispectral flow cytometry. g, Expression of selected
markers mapped on UMAP. h,i, Representative flow cytometry (h) and
quantification (i) of TCF1'CX3CR1°, CX3CR1"and TCF1 CX3CR1 cells (n =8 for
WT, n=3forHet, n=5for KO, one-way ANOVA). j, Schematic of ACT using Hspa$S

KO, Erola KO or control cells. k, Tumour growth curves (n =4 for NT, n=5for the
other groups, two-way ANOVA). 1, Kaplan-Meier survival curves (n =4 for NT,
n=5fortheother groups, Mantel-Cox test). Resultsrepresent threeindependent
experiments.m,n, Representative flow cytometry plots (left) and quantification
(right) of CX3CR1' percentages (m) and TCF1expression (n) in tumour-infiltrating
P14 T cells 6 days after ACT (n = 8, two-tailed t-test). 0, T,,-PSR scores in scRNA-seq
CD8" T cellsfromnon-responders (NR) and responders (R) to anti-CD19 CAR

T cell therapy for diffuse large B cell lymphoma® (left, NR: n= 63,482 cells from
57 patients; R: n=59,351 cells from 52 patients) and anti-PD1 therapy for non-
small cell lung cancer®® and renal cell carcinoma (RCC)®* (right, NR: n=5,672
cells from 6 patients, R: n=37,884 cells from 18 patients). Two-sided Wilcoxon
rank-sumtests. Dataarethemean +s.d.(a,b,d,e,i,m,n) ormean +s.e.m. (k,0). The
diagramsincand jwere created using BioRender (https://www.biorender.com).

Clinical relevance of T.,-PSR in cancer

Finally, we investigated the human relevance of T,,-PSR in cancer. We
performed pan-cancer CD8" T cell analyses with publicly available
single-cell transcriptomic datasets that encompass 17 cancer types
(Extended Data Fig. 11a). These T cells were isolated directly from
samples taken from patients with cancer and did not have any other
invitro manipulations. To determine whether T, -PSRis also a feature
of tumour-associated T, cells in humans, we generated a T,,-PSR sig-
naturebased onourinvivoandin vitro proteomic data (Extended Data
Fig.11b). The T.,-PSR signature consisted of genes associated with pro-
teostasisregulationthat are concurrently upregulatedin T, cellsat the
mRNA and protein levels (Extended Data Fig.11c). The expression level
of mRNAs encoding T,,-PSR signature proteins was the highest in T,
cells compared with all other T cell subsets from the tumour samples
(Extended Data Fig. 11d). We also performed pseudotime trajectory
analysis based on RNA velocity on pan-cancer CD8" T cells (Extended
DataFig.11e). We observed two opposing differentiation trajectories:
effector and exhaustion. The T.,-PSR gene signature appeared early in
the exhaustion trajectory, which increased proportionally as T cells
become progressively exhausted (Extended Data Fig. 11f). By contrast,
T..-PSR was significantly reduced during the effector trajectory. We
analysed the T,,-PSRscore in CD8' T cells from patients with liver cancer.
Patients with a lower T, -PSR signature in CD8" T cells showed better
overall survival (Extended Data Fig. 11g). Moreover, a higher T,,-PSR
signature in patients with cancer also correlated with poor responses
to immunotherapies, including both CAR T cells and ICBs (anti-PD1,
and anti-PD1with anti-CTLA4) (Fig. 50 and Extended Data Fig. 11h).

Discussion

The question of how protein quality control might differ between T cell
activation and the exhaustion program has not been clearly answered.
A key finding of our study was the activation of a distinct PSR in T,
cells, whichwe termT,,-PSR. This PSRis characterized by a high rate of
protein translation, accumulation of SGs and global protein aggrega-
tiondespiteincreased protein catabolism (Extended DataFig.12). The
high translational rate in T, cells was not associated with the produc-
tion of functional molecules. Our study provides an explanation to
this paradox in that many proteins, such as granzymes and perforin,
in T, cells aggregate instead of being properly folded, which may be
a consequence of an overwhelmed protein quality control system.
We also demonstrated that the introduction of misfolded proteins
to T cells under optimal conditions for T, cell differentiation caused
exhaustion. It has previously been reported*® that tumour cells can
evade T cellimmunity by competing for methionine to alter T cell his-
tone modifications. This result suggests that amino acid metabolism
mighthaveimportantrolesinregulating T cell function by concurrently
affecting translationand the epigenetic landscape®®. Nonetheless, the
causal relationship between PSR and T, suggests that dysregulated
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proteostasis can be a viable target forimmunotherapeutic purposes.
In this regard, it is worth noting that the HSP90 inhibitor ganetespib,
which also inhibits the T,,-PSR chaperone gp96, has been shown to
promote ICB efficacy®.

Our work identified AKT signalling as a central regulator of T.,-PSR
andT cell exhaustion. It is well established that PI3K-AKT-mTOR signal-
ling is essential for T cell activation and differentiation by upregulat-
ing metabolic programs and supporting their bioenergetic needs***.
However, theimplications of AKT in T cell exhaustion are controversial
and under-explored®>**. We demonstrated here that T, cells maintain
chronic AKT signalling. Enforced expression of constitutively active
AKT drives T, -PSR and a bona fide T cell exhaustion program. We
therefore posit that AKT signalling is required for T cell survival, but
its persistent activation disrupts the proteostatic equilibrium, which
triggers T.,-PSR and promotes exhaustion. Meanwhile, although often
thought to operate on the same axis, mTOR inhibition by rapamycin
did not show a substantial effect on preventing T cell exhaustion in
our study. It may be because mTOR signalling is already suppressed
in T, cells*”**>*, The plasticity of these signalling pathways suggests
that the crosstalk of these signalling hubs in T cell exhaustion warrants
further investigation.

Anotherintriguing aspect of T.,-PSR activationin T, cells is the selec-
tive upregulation of T.,-PSR chaperones. Therole of T.,-PSR chaperones
presents aconundrum here in T, cells. Previous studies have reported
that chaperones extend their impact beyond protein folding* .
Moreover, AKT is a known client of HSP9O (ref. 59). Furthermore, ER
chaperones such as BiP can translocate into the nucleus and function
as TFs®. Itis possible that the actions of T,,-PSR chaperonesin T, cells
gobeyond the fundamental role of protein folding and instead mediate
signal transduction. An alternative and more simplistic explanation s
that the chaperone machinery in T,, cells is qualitatively suboptimal
owing to the upregulation of some but not all chaperones. In T, cells,
the T.,-PSR chaperone stoichiometry is in disarray because of chap-
eroneimbalance as well as substrate accumulation, which all resultin
pathological proteotoxic stress.

Under chronic stimulation, T cells must navigate a delicate balance
between effector function and self-survival. We demonstrated that
modulation of T.,-PSR can enhance effector cytokine production at
the expense of survival. Meanwhile, maintaining a high rate of protein
synthesis might be advantageous for T, cells. This strategy ensures the
production of essential proteins for their survival, albeit in a manner
that is not cost-effective. Our study molecularly characterized the
aggregation proteome. We demonstrated that protein aggregation
in T cells is aglobal event without selectivity, a result that highlights
that it is the protein quality control machinery itself that is defective
in T, cells. Our findings indicate that increased protein expression of
T cell effector molecules per se without correcting the pathological
T.,-PSRin T, cells will not lead to functional improvement or reversal
ofthe exhaustion phenotype. Moreover, we showed that the introduc-
tion of misfolded proteins alone, even in the absence of persistent
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TCRstimulation, effectively induced a T cell exhaustion phenotype.
Thus, the fate of T, cellsisintricately linked to protein quality control.
How T cells sense aggregates and subsequently reprogram T cells to
T,, cells remains an open question that warrants further exploration.
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Methods

Celllines

The MC38 cell line was purchased from Kerafast (ENH204-FP). The
MB49 cell line was purchased from Sigma-Aldrich (SCC148). The
HEK293T cell line was purchased from the American Type Culture
Collection (CRL-3216). The MB49-gp33 cell line was shared by W. Cui
(Northwestern University). The B16-OVA cell line was generated as
previously described® and shared by L. Deng (Memorial Sloan Ket-
tering Cancer Center). HEK293T, MC38 and MB49 cells were cultured
in Dulbecco’s modified Eagle medium (DMEM; Gibco, 11965-092) with
10% FBS (Gibco, 10082-147) and 1% penicillin-streptomycin (Gibco,
15140-122) at 37 °C and 5% CO,. B16-OVA cells were cultured in RPMI-
1640 (Gibco, 11875-093) with10% FBS and 1% penicillin-streptomycin.
Celllines were regularly tested for mycoplasma contamination.

Mice

WT C57BL/6) mice (strain 000664) were purchased from The Jack-
son Laboratory. CD8-specific gp96-deficient mice were generated by
crossing E8i-Cre mice (The Jackson Laboratory, strain 008766) and
Hsp90b1™/*mice, previously generated and described by our group®.
The P14 mouse strain was a gift from W. Cui (Northwestern University).
OT-1(strain 003831) and Rag2™ (strain 033526) mice were purchased
from TheJackson Laboratory. These mice were maintainedin the animal
facility at the Ohio State University under standard conditions (ambi-
ent temperature of 20-24 °C, relative humidity of 30-70% and a12-h
dark-light cycle (lights on from 6:00 t018:00)). Mice aged 6-8 weeks
were used for experiments. All procedures were performed in strict
accordance with the recommendations in the Guide for the Care and
Use of Laboratory Animals of the National Institutes of Health (NIH).
The protocol was approved by the Committee on the Ethics of Animal
Experiments of the Ohio State University.

T cellisolation, stimulation and drug treatment
Spleens were isolated from C57BL/6) mice and minced into single-cell
suspensions. CD8* T cells were isolated using an immunomagnetic
negative selection kit (Stemcell,19853). Isolated CD8'T cells were first
stimulated with 3 pg ml™ plate-bound anti-CD3 (BioLegend, 100359)
and1pg ml”anti-CD28 (BioLegend, 102121) antibodiesin T cellmedium
made with RPMI-1640 with 10% FBS, 1% penicillin-streptomycin,1 mM
sodium pyruvate (Gibco, 11360-070), 1x MEM NEAA (Gibco, 11140-
050),10 mM HEPES (Gibco, 15630-080) and 50 uM 2-mercaptoethanol
(Gibco, 21985-023) supplemented with100 U ml ™ recombinant human
IL-2 (acquired from the Biological Resources Branch at the NIH) in
12-well plates at a density of 10° cells per well for 48 h at 37 °C and 5%
CO,. For chronic stimulation, CD8" T cells were re-stimulated every
2 days by passaging to new plates with plate-bound anti-CD3in T cell
medium with IL-2. For acute stimulation, CD8" T cells were passaged
every 2 daysand maintainedin T cell medium with IL-2. In some experi-
ments, cells were treated with MK2206 (Cayman, 11593), LY294002
(Sigma-Aldrich, 440202) or rapamycin (Sigma-Aldrich, 553210) 2 days
afterinitial activation and replenished concurrently with cell passage.
To measure cytokine production, activated cells were collected,
plated and re-stimulated with 0.5x cell stimulation cocktail (Thermo
Fisher, 00-4970-93) in T cell medium for 3 hat 37 °C and 5% CO.,.

Tumour challenge and TIL isolation

For the MC38 tumour model, 1 x 10 cells were subcutaneously injected
into the right flank of shaved C57BL/6) mice. Mice were euthanized for
tumour collection 16 days after tumour implantation for cell sorting.
For the MB49 tumour model, 5 x 10° cells were subcutaneously injected
into theright flank of shaved C57BL/6) mice. Tumours were collected
13 days after tumour implantation. To prepare single-cell suspensions,
isolated tumours were chopped and washed with PBS before incubation
with collagenase 1 (200 U ml™, Worthington, LS004196) in serum-free

RPMI-1640 for 30 min at 37 °C with gentle agitation. After digestion, 2%
BSAinPBS wasadded to cell suspensions to neutralize collagenase. Cell
suspensions were washed with PBS and filtered through a 70 pumnylon
filter. Single-cell suspensions were centrifuged and resuspended in PBS
for downstream assays. For cell sorting, immune cells were enriched
using amouse TIL CD45 positive selection kit (Stemcell, 100-0350).

Flow cytometry

Cells were washed with PBS twice. Dead cells were stained using Live/
Dead fixable blue (Invitrogen, L23105) or Zombie UV (BioLegend,
423108) at4 °Cfor 15 min. Cells were washed with FACS buffer twice and
asurface molecule staining antibody cocktail was applied for 30 min
at4 °C. Afterincubation, cells were washed twice with FACS buffer and
then fixed and permeabilized using a FOXP3 fixation and permeabiliza-
tionkit (eBioscience, 00-5523-00) overnight. After overnight fixation,
cellswere washed twice in permeabilization buffer and anintracellular
staining antibody cocktail was added to the cells. After 2 h of incuba-
tion at room temperature, cells were washed twice with FACS buffer
and analysed using Cytek Aurora. Acquired data were analysed with
FlowJo software (v.10.10, BD Life Sciences) or OMIQ (Dotmatics) for high
dimensional analysis. The gating strategy for TIL analysis is provided
inSupplementaryFig. 2. Alist of antibodies used for the multispectral
flow cytometry study is provided in Supplementary Table 1.

For protein aggregation staining, cells were washed with HBSS
(Sigma-Aldrich, H6648) twice and stained with 100 nM NIAD-4 (Cay-
man, 18520) or 50 pM CRANAD-2 (Cayman, 19814) in HBSS for 30 min
at 37 °C and 5% CO,. Cells were stained using Live/Dead fixable Near
IR (Invitrogen, L34975) at 4 °C for 15 min, followed by fixation (BD
Biosciences, 554655) for 15 min and DAPI staining for 5 min at room
temperature. Cells were then analysed by ImageStream for acquiring
fluorescent images or Cytek Aurora for quantification.

For SG analysis, cells were collected and stained using Live/Dead
fixable NIR, followed by fixation in BD Cytofix fixation buffer (BD
Biosciences, 554655) for 15 min and permeabilization using a FOXP3
fixation and permeabilization kit for 30 min at room temperature.
Cellswere then stained with anti-G3BP1antibody (Proteintech, 13057-
2-AP) in permeabilization buffer for1 hat roomtemperature and then
FITC-conjugated anti-rabbit antibody for 30 min. DAPI was added to
the cell suspension and incubated for 5 min. Data were collected by
ImageStream and analysed using IDEAS (v.6.2). Live cells were gated for
SG analysis. Cells with SG loci were determined by gating on the Bight
Detail Intensity feature high population on the FITC-G3BP1 channel.

Protein synthesis rate measurement

Nascent proteins were labelled using a Click-iT HPG Alexa Fluor 488
Protein Synthesis Assay kit (Thermo Fisher, C10428). Cells were incu-
bated with 50 uM HPG (Thermo Fisher, C10186) in T cell medium made
with methionine-free RPMI (Gibco, A14517-01) for 30 min at 37 °Cand 5%
CO,. Cycloheximide (Sigma-Aldrich, 239763) was added to the negative
control group at 50 pg ml toinhibit translation. In some experiments,
2.5 UM MG132 (Sigma-Aldrich, M7449-1ML) or 10 nM bafilomycin Al
(Sigma-Aldrich, SML1661) was added to cells after HPG incubation.
Cells were then labelled following the manufacturer’s protocol and
analysed using Cytek Aurora.

For measuring translationin TIL subsetsin vivo, 50 mg kg™ OPP (Vec-
tor Laboratories, CCT-1407-25) was administered into tumour-bearing
mice by intraperitoneal injection. Mice were killed exactly 1 h after
injection. Tumours wereisolated and processed into single-cell suspen-
sions. Cells were stained with surface markers and OPP was labelled
using a Click-iT reaction kit following the manufacturer’s protocol
(Thermo Fisher, C10457).

Cellsorting
Single-cell suspensions were stained using Live/Dead fixable blue
(Invitrogen, L23105) at 4 °C for 15 min. Cells were then washed twice



with FACS after viability dye staining. Tumour cells were enriched for
CD45" lymphocytes using amouse TIL positive selection kit (Stemcell,
100-0350) and spleen samples from mice infected with LCMV were
enriched for CD8' T cells with a negative selection kit (Stemcell, 19853)
before viability staining. Cells were thenincubated with asurface stain-
ing antibody cocktail for 30 min at 4 °C. Cells were washed twice with
FACS buffer and filtered through a 70 pm nylon filter immediately
beforeloadingintoa Cytek Aurora CSfor sorting. For sorting,a100 pm
nozzle was used for tumour-derived samples and a 70 pm nozzle for
spleen-derived samples.

LCMV infection model

Foracute LCMVinfection, 8-10-week-old male mice were intraperito-
neally inoculated with 2 x 10° p.f.u. LCMV Armstrong. For chronic LCMV
infection, 8-10-week-old male mice were intravenously inoculated with
2 x10°p.f.u.LCMV clone 13in 400 pl RPMI-1640. Mice were euthanized
onday 8 and day 30 after infection.

GeneeditinginT cellsby CRISPR-Cas9

The sgRNAs targeting each candidate were designed and purchased
from IDT. The sequences of sgRNAs are provided in Supplementary
Table 2. Two days before electroporation, splenic CD8* T cells were
isolated and activated with 3 pg ml plate-bound anti-CD3 and 1 pg ml™*
anti-CD28 antibodies in T cell medium supplemented with100 U ml™
IL-2. On the day of electroporation, RNPs were assembled by mixing
1.5 pl sgRNA and 1 pg Cas9 nuclease V3 (IDT, 1081059) and incubated
atroom temperature for 20 min. Electroporation was prepared using
a P4 Primary Cell 4D-Nucleofector kit (Lonza, V4XP-4032). The acti-
vated T cells were washed with PBS twice and resuspended with P4
nucleofector solution with supplement provided by the kit. RNPs and
1plHDR Enhancer (IDT,10007921) were added to the cell suspensions.
The reaction mix was loaded into a Nucleocuvette after incubation at
room temperature for 2 min. 4D-Nucleofector and program CMT137
were used for electroporation. Cells were rested in T cell medium
with 50 U mlI™ IL-2 for 2 days and received re-stimulation every 2 days
afterwards. At 8 days after electroporation, cells were collected for
downstream analyses.

Protein electrophoresis and western blotting
Cells were pelleted and lysed in NP-40 buffer (50 mM Tris 7.4,150 mM
NaCl, 1% NP-40 and 0.1% sodium deoxycholate) supplemented with
protease and phosphatase inhibitor cocktail (Thermo Fisher, 78440)
andincubated onaroller for30 minat4 °C. Samples were centrifuged
at18,000g, 4 °C for 15 min and supernatant was transferred to fresh
tubes as the detergent-soluble fraction. The detergent-insoluble frac-
tionwas resuspended in NP-40 buffer supplemented with 4% SDS. The
protein concentration was quantified using a BCA assay (Pierce, 23227).
Native samples were diluted with native sample buffer (Thermo
Fisher, NP) and run on 3-8% Tris-acetate gels (Thermo Fisher, EA0378)
with Tris-glycine native running buffer (Thermo Fisher, LC2672). Sam-
ples were electrophoresed at 150 V for 3 h at 4 °C. SDS-PAGE samples
were boiled in NUPAGE LDS sample buffer (Thermo Fisher, NPO007)
andresolved on4-12% Bis-Tris gels (Thermo Fisher, NP0335) with MOPS
SDS running buffer (Thermo Fisher, NPOOO1). Samples were electro-
phoresed at150 Vfor1hatroomtemperature.Alist of antibodies used
for western blot analyses is provided in Supplementary Table 1.

Retrovirus packagingand T cell transduction

The retroviral EV plasmid pMIG and pMIG-myrAKT were purchased
from Addgene (52107, 65063). The open-reading frame for CFTRA™%8
was synthesized and cloned into the pMIG plasmid for this study. To
generate retrovirus formouse T cell transduction, HEK293T cells were
transfected with pMIG and pCL-Ecoin Opti-MEM. The cell culture super-
natant was collected 48 h after transfection and concentrated overnight
with Retro-X Concentrator (Takara, 631456). Concentrated retrovirus

was added onto plates coated with RetroNectin (Takara, TIOOB) and
spun at1,800g at 32 °C for 2 h. Virus supernatant was removed after
centrifugation and washed with PBS twice. Polyclonal, P14 cells and
OT-1CDS8' T cells that have been activated for 16-48 h were added to
the virus-coated plate and cultured for 24 h. Cells were washed twice
and plated into new plates for another 3-6 days for downstream analy-
ses. For the generation of retrovirus for human T cell transduction, a
similar approach to that used for mouse cells was used, with the key
modification of using the Plat-A cell line for virus packaging. To trans-
ducehuman CD8'T cells, CD8"T cells were magnetically isolated from
peripheral blood mononuclear cells (Stemcell, 17953) and activated
with Dynabeads (Gibco, 11131D) for 1 day. After activation, the cells were
transduced with the indicated virus. Inbrief, the cells were spinoculated
at1,000ginaRetroNectin-virus-coated plate. After 24 h, the virus was
removed, and subsequent analyses were performed after an additional
6-8 days of activation and maintenance.

ACT experiment

P14 cellswereisolated from the spleens of P14 mice and activated with
1pg ml™ gp33 peptide. Two days after activation, cells were edited by
CRISPR-Cas9 as described above and expanded for another 2 days with
100 U mlI™IL-2. Next, 1x 10° P14 cells were intravenously transferred per
mouse. Then 5 x 10° MB49-gp33 cells were subcutaneously injected
into the right flank of shaved WT C57BL/6) mice or Rag2’ mice. WT
mice were lymphodepleted using 5 Gray of total body irradiation on
the day before cell transfer and randomized for treatment groups. OT-1
cellswereactivated and transduced with retroviral vector as described
above. Transduced OT-1cells were purified by cell sorting on the basis of
positive GFP expression. In total, 2.5 x 10° OT-1cells were intravenously
transferred to B16-OVA tumour-bearing Rag2”~ mice. For OT-1ACT
experiments, 5 x 10° cells B16-OVA cells were subcutaneously injected
into theright flank of Rag2”~ mice 8 days before adoptive transfer and
randomized into treatment groups.

Immunofluorescence analysis by confocal microscopy

T cellswere collected and spun onto glass coverslipsin a12-well plate.
For protein aggregation staining, cells were stained with NIAD-4 and
fixed as described above. For CFTR staining, cells were fixed with fixa-
tion buffer (BD, 554655) for 15 min, permeabilized with 0.5% Triton
X-100 in PBS for 20 min and blocked with 2% BSA for 1 h. Cells were
stained with primary anti-CFTR antibody (Proteintech, 20738-1-AP)
and then Alexa Fluor 647-conjugated goat anti-rabbit IgG antibody
(Thermo Fisher, A-21244). After staining, coverslips were mounted
onto glass slides with mountant and DAPI (Thermo Fisher, P36962).
Images were taken using an Olympus FV3000 microscope with x60
magnificationand processed with Olympus OlyVIA (v.4.2). For analysis,
images wereimported into Image) as .tiff filesand adjusted to RGB stack
format for downstream processing. Thresholds for positive detection
of aggregates were determined through normalized autodetection
and maintained across all images with alower threshold of 100 and
an upper threshold of 255 to generate binary image masks. The area,
average size per particle, percentage of area and mean fluorescence
intensity were analysed using the Analyze Particles function selected
forarea, areafraction, fluorescence intensity, particle count and aver-
age particle size.

MS sample processing

Cell samples were collected and washed with PBS once. Cell pellets
were frozenat -80 °Cif notimmediately processed. Cellswere lysedin
lysis buffer made with 5% SDS (Thermo Fisher, AM9820), 50 mM TEAB
(Thermo Fisher, 90114) and 2 mM MgCl, (Thermo Fisher, AM9530G)
with HALT protease inhibitor cocktail (Thermo Fisher, 78441). Lysates
were homogenized using either a probe sonicator or aBiorupter. DNA
was removed by centrifugation at 13,000g for 10 min and the pellet
discarded. For in vitro cell samples, the protein concentration was
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quantified using a BCA assay (Pierce, 23227) and 50 pg protein of each
sample was used for subsequent steps. For in vivo samples, total lysates
were used assuming accurate FACS cell counts. Cell lysates were then
treated with20 mM DTT (Sigma-Aldrich, 10197777001) at 95 °C for
10 min, followed by the addition of 40 mM iodoacetamide (Pierce,
A39271) atroom temperature for 30 mininthe dark and then quenched
with20 mM DTT for 15 minat room temperature. Phosphoricacid (1.2%;
Sigma-Aldrich, 345245) was used to acidify proteins. Binding buffer
with 100 mM TEAB in methanol (Thermo Fisher, A4581) was added to
samples that were then loaded onto S-traps (ProtiFi, CO1-micro-80)
and washed with binding buffer 3 times. Proteins were digested with
trypsin (Pierce, 90058) at 47 °C for 2 h. Digested peptides were eluted
from S-traps with 0.2% formic acid (Thermo Fisher TS-28905) followed
byasecond elution with 50% acetonitrile (Sigma-Aldrich, T7408) in 0.2%
formicacid. Eluates were pooled and lyophilized for storage at =80 °C.

MS acquisition

Peptides were reconstituted with 2% acetonitrile in 0.1% formic acid
and separated using either an Easy-nLC 1200 coupled to an Thermo
Exploris 480 tandem mass spectrometer (Thermo Fisher) or an UltiMate
3000 UHPLC coupled to a Thermo Fusion tandem mass spectrometer
(Thermo Fisher). Inboth set ups, peptides were first desalted online
using an Acclaim PepMap 100 Trap column (75 pum inner diameter,
150 mm length, 3 pm C18 packing) and then separated and ionized
using either a 50 cm (Easy-nLC) or 25 cm (Ultimate 3000) Easy-Spray
HPLC column (75 pminner diameter, 2 pm C18 packing) with a 90-min
linear gradient.

All data-independent acquisition (DIA) measurements were con-
figuredinastaggered window pattern using boundaries optimized to
place window boundariesin forbidden zones. The Thermo Fusion was
configured to use two DIA injections (covering peptide precursors from
400to0 700 m/zand from700to 1,000 m/z) of 38 x8 m/z-wide windows
inastaggered window pattern. These windows were configured to have
17,500 resolution and an automatic gain control (AGC) target of 4 x 10°.
Precursor spectrawere placed every 38 scans (1 per cycle) using 35,000
resolutionand an AGC target of 4 x 10°. Similarly, the Thermo Exploris
480 was configured to use single-injection DIA measurements (cover-
ing peptide precursors from 400 to 1,000 m/z) of 38 x 16 m/z-width
windows. These windows were configured to have 30,000 resolution
and an AGC target of 1 x 10°. Precursor spectra were placed every 38
scans (1 per cycle) using 60,000 resolution and an AGC target of 1 x 10°,

For each dataset, a sample pool was made from subaliquots and
used for library generation. We used gas-phase fractionation (GPF)
DIA following the chromatogram library approach®®. For this, we
injected each peptide pool 6 times using different 100 m/z regions
(400-500 m/z, 500-600 m/z, 600-700 m/z, 700-800 m/z, 800-
900 m/zand 900-1,000 m/z). Each injection was configured to use
4 m/z staggered DIA windows and appropriate precursor windows.
Otherwise, all measurements were performed as for normal DIA above
ontheir respective instrument.

Proteomic data analysis

Raw files were demultiplexed using MSConvert in the Proteowiz-
ard package (v.3.0.20169)® and then searched using EncyclopeDIA
(v.2.12.31). EncyclopeDIA was configured with the default settings for
Orbitraps:10 ppm precursor, fragment and library tolerances. Encyclo-
peDIAwas allowed to consider bothBand Yions, and trypsin digestion
was assumed. Searches were performed using a two-step procedure.
First, the GPF-DIA injections were searched using a Prosit®’® predicted
spectrum library to generate achromatogram library based on the Mus
musculus UniProt FASTA database (downloaded on 22 October 2019,
containing 17,025 entries). All z= +2 or z = +3 peptides from 396.4 to
1002.7 m/z (with a maximum of one missed cleavage) were predicted
assuming anormalized collision energy of 33. Peptides detected inthe
six GPF-DIA injections at a1% peptide-level false discovery rate (FDR)

were compiledinto the chromatogram library. Quantitative DIAinjec-
tions were searched against this chromatogram library, again filtered
toal% peptide-level FDR. Anormalized protein expression matrix for
all proteomics generated in this study is provided in Supplementary
Table 3. Bubble plots of protein expression were generated using the
R package tidyverse (v.1.3.1)"' based on z score-normalized protein
expression values. Gene set enrichment analysis for protein clusters
was performed using Enrichr’™,

Bulk RNA-seq sample preparation and data analysis

Acutely and chronically stimulated T cells were collected on day 8 after
initial activation. Cells were washed with PBS twice and pelleted. RNA
was first extracted using TRIzol and chloroform and then cleaned up
using a RNeasy Micro kit (Qiagen, 74004). Sample library prepara-
tionand sequencing were performed by Azenta Life Sciences. Poly(A)
selectionwas used for library preparation. Sequencing was performed
using an lllumina NovaSeq platform with a depth of 50 million reads
per sample. The raw bulk sequences were checked, trimmed and fil-
tered using Fastp (v.0.23.4)”. The filtered reads were mapped to the
mouse reference genome mm10 using HISAT2 (v.2.2.1)”®, and samtools
(v.1.17)”” was used to convert and sort BAM files. Last, the subread tool
(v.2.0.6)"® was used for gene quantification and generating the raw
expression matrix. Raw expression data were first log-normalized, and
the R package Limma (v.3.56.2)” was used to fit the model and perform
differential expression analysis. Toavoid NA values, a pseudo count of
1was added to the raw count matrix. Genes with an absolute log[fold
change] value greater than 1.5 and FDR-adjusted P value smaller than
0.05 are considered as differentially expressed genes.

Statistical comparison of protein expression and gene
expression

Toaccurately compare protein and gene expression levels, we created a
hash table (Supplementary Table 4) thatincluded the protein accession
number, protein name, gene name and Mouse Genome Informatics
(MGI) number. Each protein and RNA matrix needed to match the hash
table, and only the overlapped proteins and genes were kept.

We compared the normalized and log-transformed protein expres-
sionand gene expression levelsinsamples of the sample condition (for
example, day 8 T, samples). Only proteins and genes that overlapped
inboth proteinand RNA datawere retained for comparison. APearson’s
correlation test was applied to calculate the correlation coefficient
between protein expression and gene expression levels. We also com-
pared the log[fold change] of proteins and genes between different
conditions. Thelog[fold change] of proteins and genes were calculated
in the analysis of differentially expressed genes described above.

We generated a functional gene list to further evaluate the expres-
sion level of proteins and genes undergoing specific cell functions,
including 13 gene ontology terms, one EIF2A-dependent and one
EIF2A-independent gene list. Specifically, the EIF2A-dependent
and EIF2A-independent genes were determined according to the
EIF2A-regulated upstream open reading frames®. As previously
described™, EIF2A-regulated upstream open reading frames were
defined as theratio of 5 untranslated region (UTR) translationin con-
trol/5” UTR translation in £if2a KO > 4. The remaining mRNAs with a
ratio <4 were defined as non-EIF2A regulated (EIF2A-independent).
The 5’ UTR translation rate was quantified for mRNAs with an average
of more than 16 reads over all replicates. Genes in each of the 26 lists
are highlighted on the scatter plot to compare the protein and gene
expression/log[fold change].

Gene signature score analysis

For each of the gene lists mentioned above, we also calculated a gene
signature score based on the single-sample gene set enrichment
analysis (ssGSEA) method. An in-house script was used to perform
the ssGSEA analysis. TheR package heatmaply (v.1.4.2)%° or Morpheus



(https://software.broadinstitute.org/morpheus) was used to draw
the heatmap. For gene signature score analysis for scRNA-seq data,
the raw expression matrix of LCMV scRNA-seq data was downloaded
from GSM3701181 (ref. 31). Cells were divided into three categories
on the basis of gene expression levels: progenitor state (Slamfé6 > 0
and Cx3crl = 0); intermediate state (Cx3crl > 0); and terminal state
(Slamf6 = 0 and Cx3crl = 0). Cells in each category were randomly
dividedinto three equal subgroups. Pseudo bulk gene expression was
defined by the average expression of genesin each cell subgroup. Then,
the same ssGSEA method was performed on the pseudo bulk expression
datato calculate the gene signature scores and to generate the heatmap.

Pan-cancer scRNA-seq data collection

To constructacomprehensive pan-cancer scRNA-seq dataset, we com-
piled transcriptomic profiles from 346 tumour samples derived from
251individuals across 20 publicly available scRNA-seq datasets® 1®°
(Supplementary Table 5). To ensure data consistency and to minimize
platform-related biases, only datasets generated using the 10x Genom-
icsdroplet-based platform were included for our analyses.

Quality control and preprocessing of the pan-cancer scRNA-seq
data. We applied rigorous quality control measures using the pack-
age Scanpy (v.1.9.5)' to filter and preprocess single-cell transcrip-
tomic data. The following inclusion criteriawere applied: (1) each cell
expressed at least 200 genes; and (2) mitochondrial gene content
remained below 20% of total counts. Further filtering steps removed
the following data: (1) low-quality barcodes indicative of debris (<400
detected genes, <500 unique molecularidentifiers); and (2) potential
duplicate cells (>5,500 detected genes or >30,000 unique molecular
identifiers). After quality control, raw count matrices and AnnData
objects were concatenated, and counts were normalized to transcripts
per millionusing sc.pp.normalize_total, followed by log-transformation
with sc.pp.loglp. Non-tumour cells were excluded before normaliza-
tion, which produced 1,030,968 high-quality single cells and 14,090
genes for downstream analyses.

Batch correction and data integration. To harmonize datasets across
studies while preserving biological signals, we used the Python package
scVI(scvi-toolsv.1.0.4)' for batch-effect correction and dataintegra-
tion. The scVI model was trained with sample identity as a covariate,
mitigating inter-sample technical variability while ensuring robust
integration of multiple datasets. The efficiency of batch correction was
assessed by quantifying the reduction in batch-specific effects while
maintaining key biological variance. After correction, downstream
analyses—including clustering, differential gene expression and trajec-
tory inference—were performed ontheintegrated dataset. UMAP was
used for visualization, depicting cellular heterogeneity across batches,
datasets, sex, organ origins and cancer types.

Cell-type annotation of pan-cancer scRNA-seq data. To anno-
tate cell populations, we leveraged the scANVI algorithm (scVI-tools
v.1.0.4), which provided pre-labelled reference annotations for epi-
thelial, endothelial, fibroblast, lymphoid, myeloid and plasma cells.
Initial clustering was performed in the scANVI latent space, followed
by Leiden clustering to assign cell identities. The sCANVI model was
trained with max_epochs=20, and cluster annotations were transferred
with n_samples_per_label=100. For detailed characterization of T cell
subpopulations, we further integrated corresponding AnnData objects
and applied scVI-based batch correction.

Functional signature calculation for scRNA-seq data. We used
the scanpy.tl.score_genes function from the Python package Scanpy
(v.1.9.5) to compute gene set scores across individual cells, which
enabled the quantification of functional signatures in the scRNA-seq
dataset.

RNA velocity and trajectory inference

RNA velocity analysis was performed to infer the directionality of cel-
lular state transitions using spliced and unspliced transcript counts.
Velocities were computed using the scVelo toolkit (v.0.3.3)'°*'°*, which
estimates transcriptional dynamics across single cells. The resulting
velocity vectors were projected onto the UMAP embedding to visual-
ize the flow of differentiation. Toinfer developmental trajectories, the
Slingshot algorithm was applied to the UMAP coordinates, incorporat-
ing RNA velocity information to identify lineage structures. Slingshot
fit smooth curves (principal curves) through the data and assigned
pseudotime values along eachinferred lineage. Two dominant lineages
were identified: one progressing towards a T, cell phenotype (line-
age 1) and the other towards an effector-like phenotype (lineage 2).
Signature scores for naive, exhaustion and T.,-PSR gene modules were
calculated across pseudotime for each lineage using averaged normal-
ized expression of predefined marker genes.

Validation of the T,,-PSR signature in CD8" T cells and its
prognosticimpact

Toassess the clinical significance of the T,,-PSR signaturein CD8" T cells,
we analysed public processed scRNA-seq data from 116 liver cancer
samples obtained from 94 male patients'®. Survival analyses were
restricted to primary tumours and metastatic samples. After quality fil-
tering, batch correctionand cell-type annotation using the established
preprocessing pipeline, CD8' T cells were isolated and T,,-PSR signature
scores were computed using the scanpy.tl.score_genes functionfrom
the Scanpy package (v.1.9.5).

T..-PSR signature expression in CD8* Tcells and its impact on
patient survival. To evaluate the prognostic significance of T,,-PSR
expressionlevelsinCD8'T cells, we performed survival analyses using
Kaplan-Meier curves, with statistical comparisons conducted using
the log-rank test and univariate Cox proportional hazards (Cox PH)
models, as specified in each figure. Two additional multivariable Cox
PHmodels werefitted to account for potential confounders. The hazard
ratioand 95% confidence intervals were reported on the basis of these
models. Kaplan—-Meier survival curves were generated to compare
high versuslow T.,-PSR expressioninliver cancer scRNA-seq datasets,
with Pvalues computed using univariate Cox PH models. To determine
the optimal cut-off value for T,,-PSR signature expression in relation
to survival outcomes, we used the surv_cutpoint function from the
R package survminer. This approach uses maximally selected rank
statistics from the R package maxstat'*® to stratify patients into low-risk
and high-risk groups. Moreover, continuous variablesincludedin the
Cox PH'” models were assessed for linearity to ensure model validity.

T.-PSR expression inimmunotherapy-treated patients

We further investigated T.,-PSR expression in responders and
non-responders across independent scRNA-seq datasets from patients
receiving diverse immunotherapy treatments, including CAR T cell
therapy for refractory B cell ymphoma®, anti-PD1 therapy for lung
cancer and advanced renal cell RCC®%%, and anti-CTLA-4 with anti-PD1
combination therapy for RCC®*'%%, For each dataset, we applied the
same preprocessing pipeline, including quality filtering, batch cor-
rection and cell-type annotation, as described for the pan-cancer
scRNA-seq dataset.

Statistical analysis

Statistical analyses were performed using GraphPad Prism (v.10).
Two-tailed unpaired Student’s ¢-test was used for comparison between
two groups. One-way ANOVA was used for comparisons among three
or more groups. Two-way ANOVA was used to compare curves of
time-course studies, including cell and tumour growth curves. P < 0.05
was considered significant.
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Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Proteomic data are available from the MassIVE repository
(MSV000098609) and through ProteomeXchange (PXD066433).
Normalized protein expression data are provided in Supplemen-
tary Table 3. Bulk RNA-seq data from this paper have been deposited
into the NCBI Gene Expression Omnibus database with the identifier
GSE303401. Source data are provided with this paper.

Code availability

Scripts generated for analysis are available from Zenodo (https://doi.
org/10.5281/zenodo.16323779)'%°,
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Extended DataFig.1|Study of the proteome changes during T cell exhaustion
usinganinvitro exhaustion model and quantitative mass spectrometry.
a,Schematic diagram of generation of mouse CD8" Tex cellsin vitro by repetitive
TCRstimulations followed by parallel bulk RNA-seq and mass spectrometry.

b, Proliferation and viability of Teff and Tex cells during the 8-day course post
initial activation (n =4, two-way ANOVA). ¢, Representative flow cytometry
plotsand statistics of the percentage of PD-1'TIM-3" (upper) and IFNy TNFa*
(bottom) cells over the total CD8" T cells in Teff versus Tex cells (n = 3, two-tailed

ttest).d, Schematic diagram of the workflow of the chromatogram library-
based data-independent acquisition (DIA) mass spectrometry. e, Expression
levels of indicated proteins measured by flow cytometry (line) and mass
spectrometry (scatter-bar). Teff cells were day 3 acutely activated CD8" cells
invitro. Early and late Tex cells were day 3 and day 7 chronically activated CD8"
Tcells. Data arepresented as mean + SD. Diagramsin a and d were created in
BioRender. Wang, Y. (2025) https://BioRender.com/n0Oibmgq.
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Extended DataFig.2|Association as well as discordance between RNA
and protein expressionlevelin T cells. a, Correlation of RNA and protein
expression levels of all detected moleculesin Teff and Tex cells 8 days post
initial activation. Each dot represents one molecule. Aregressionline witha

shaded 95% confidence intervalis shown. (r: Pearson correlation coefficient).

b-c, Correlation between RNA levels and protein expression fold changes of

LogFC (Tex vs. Teff)

between Tex and Teff cells (r: Pearson correlation coefficient; n: numbers of
proteins/genes mapped to each geneontology, A regression line with a shaded
95% confidenceinterval is shown).d, Bar plots of proteinand mRNA expression
changes of selected transcription factorsin Tex vs Teff cells. e, Bar plots of
protein and RNA expression changes of molecules belonging to theindicated
geneontologiesin Texvs. Teff cells.

molecules across one customer gene set and seven different gene ontologies
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Extended DataFig. 3 |Study of T cell exhausion using an antigen-specific
systemagainst LCMV. a, Gating strategies for sorting antigen-specific CD8"
Tcellsintodifferent subpopulations from the spleens of LCMV infected mice.
Tet, tetramer. b, Heatmap of expression levels of 17 gene signatures in gp33*

T cellsubpopulations on day 30 post LCMV Clone 13 infection (the scRNA-seq
datawere fromZander etal.). T;,og, Tine Teex Subpopulations were determined
based ontheir expression level of Slamf6 and Cx3crl1. ¢, Schematic diagram of
longitudinal proteome analysis of P14 T cells transferred to mice and harvested

8,15and 30 days after infection with LCMV Armstrong or Clone 13. Created in
BioRender. Wang, Y. (2025) https://BioRender.com/n0Oibmgq. d, Heatmap of
expression levels of proteins belonging to different T cell signaturesin P14

T cellsfrom LCMV Armstrong or Clone 13 infected mice. e, Expression dynamics
of protein chaperonesin P14 cells analyzed asin ¢ (n =4, two-tailed t test). Data
arepresented as box plotsdisplaying the median (center line), 25th and 75th
percentiles (bounds of the box), and minimum and maximum values (whiskers).
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Extended DataFig. 4 |See next page for caption.
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Extended DataFig. 4 |Mass spectrometry-based quantitative proteomics
uncovers proteome changes during T cell exhaustion. a, Bubble plot of

the expressions of proteins associated with T cell stemness, activationand
exhaustion. Bubble colorintensity is proportional to protein expression level.
Bubble size is proportional to the absolute z-score value. b, Enrichment analysis
of proteinsin cluster1-5and 7, 8 by Enrichr (one-sided Fisher’s exact test with
Benjamini-Hochberg correction). Cluster 6 data was show in main Fig.1. Top 10
significant gene ontologies are shown. ¢, PCA analysis of the proteome of

invitro-generated Teffand Tex cells atindicated time points.d, Schematic
diagram of generating Teff, early and late Tex in vitro. Created in BioRender.
Wang, Y. (2025) https://BioRender.com/n0ibmgq. e, Gene set enrichment
analysis of differentially expressed proteinsin early Tex versus Teff (top) and
late Tex versus Teff cells (bottom).f, Volcano plots of differentially expressed
proteinsinlate Tex versus Teff cells (two-sided t-tests with Benjamini-Hochberg
correction).Proteins belonging to GO term “Responses to ER stress” are colored.
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Extended DataFig.5|Exhausted T cells do not have expected features of
translational attenuation. a, Bar plot of protein and RNA expression changes
of IRES motif-containing genesin Tex vs Teff cells 8 days post initial activation
fromtheinvitro exhaustion model. b, Correlations of RNA and protein
expression fold changes of EIF2A-dependent and EIF2A-independent genesin
Tex vs Teff cells. Aregression line withashaded 95% confidence intervalis
shown. ¢, Enrichment analysis by Enrichr on proteins showing upregulationin
bothRNA and protein level (circled, left) in Tex versus Teff cells (one-sided
Fisher’s exact test with Benjamini-Hochberg correction). Aregression line with a
shaded 95% confidence interval isshownintheleft panel.d, PDCD4 expression
across different CD8" T cells subpopulations fromin vitro exhaustion and
invivo tumor models by mass spectrometry (n =5 forinvitro model, n =3 for
MC38 and MB49 tumor models, one-way ANOVA). Data are presented as mean

[
Log, fold change

-10 -5 5
(center line) and min to max (box bounds). e, The left panelis the heatmap of
proteinexpression levels associated with selected Gene Ontology (GO) terms
ininvitro-generated Teffand Tex cells 8 days post initial activation. Gene

Set Enrichment Analysis (GSEA, right) compares Tex versus Teff cells, with
normalized enrichmentscore (NES), gene rank distribution, and associated
unadjusted P values are shown. P values were estimated using an adaptive
multi-level split Monte Carlo scheme. f, Volcano plots of differentially expressed
proteinsin Tex versus Teff cells. Red: translation-related proteins; Blue:
transcription-related proteins; Grey: other proteins (two-sided t-tests with
Benjamini-Hochberg correction). g, Mass spectrometry analysis of protein
expression levels of RPL13, eIF4E and eEF2 (n = 3for Teffand n = 4 for Tex,
two-tailed t test).



a )
Translation (GO:0006412) b
° elF2D elF4G3
%‘1‘ 10 o2 ns  P=0.015 P=0042 ns_P=0,0023 P=0.0049
5 S5 05 o et o S
Qo 0.0 EZO . e 0? .ﬁﬂ . OQOO%.g
o 2 00-1@,----%- ALA [ N =D S
° 89 o
=3 = ()
3 S &-05
Q Se — ——
=3 0 8 15 30 0 8 15 30
g Days post infection
I e Naive cee Armstrong ocee Clone13
-25 0.0 25 -25 0.0 25
Log2FC(CI13/Arm)-day 8 Log2FC(CI13/Arm)-day 15
c MC38 TIL ex vivo d MB49 TIL ex vivo
j MB49 TIL ex vivo
MC38 TIL ex vivo P =0.0003 P <0.0001
5 1
6x10 P=00087 ® Spleen CD8* T 31057 00001 W SpleenCDS*
— tex —
Ttex L Throg L . Torog
= 4x105 T = 5 |
T @ 4x10 int T % 2x10° F | % Tint
int ~ T, int < Ii‘l T
T E(L tex I?(L tex
prog O 2x105 prog & 1x1054
Q ‘
Spleen CD8* T Spleen CD8* %
HPG-AF488 0- HPG-AF488 0-

Extended DataFig. 6 | Proteinsynthesisis upregulatedin exhausted T cells
inboth tumor and chronic LCMV infection models. a, Volcano plots of
differentially expressed proteinsin P14 T cells from LCMV acute and chronic
infections as described in Extended Data Fig.3c. Proteins belonging to the
proteintranslation (GO:0006412) are coloredinred.b, elF2D and elF4G3
expressioninP14 T cells from LCMV acute and chronicinfections (n =4, multiple

ttest). Dataare presented as box plots displaying the median (center line),
25thand 75th percentiles (bounds of the box), and minimum and maximum
values (whiskers). c-d, Flow cytometry histogram and bar plot of 30-min HPG
incorporation ex vivoin tumor-infiltrating CD8" T cell subpopulations from
mouse MC38 (c) and MB49 (d) tumors (spleen:n=4, TIL:n =7, one-way ANOVA).
Dataincanddare presented asmean +SD.
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Extended DataFig.7|Stressgranules, proteasomal and lysosomal activities
areincreasedinTex cells. Allexperiments were performed using mouse Teff
and Tex cellsgeneratedin vitro 8 days postinitial activation. a, ImageStream
analysis of G3BP1stress granules (SGs) in Teffand Tex cells. b, Quantification of
the frequency of G3BP1SGsin Teffand Tex cells determined with Bright Detail
Intensity by ImageStream analysis. Atleast 2,000 live cells were examined for
eachreplicate (n=4, two-tailed t test). c, Flow cytometry quantification of
G3BPlexpressionin Teffand Tex cells (n =4, two-tailed t test). d, Representative
flow cytometry plots and statistics of G3BP1expressionin G3bpl knockoutand
control wild-type Tex cells (n =4, two-tailed t test). e, Representative flow

cytometry plots and statistics of the percentage of IFNy ' TNFa" cells out of the
total CD8" T cellsin G3bpl knockout and wild-type Tex cells (n =4, two-tailed
ttest).f, Viability of G3bpI knockout and wild-type Tex cells (n =4, two-tailed
ttest).g, Proteasomal activity in Teffand Tex cells (n = 4, two-tailed t test). h, Flow
cytometry quantification of lysosome massin Teffand Tex cells (n = 6, two-tailed
ttest).i,Degradation kinetics of newly synthesized proteins in Teffand Tex cells
(n=3).j, Fold changes of HPG MFI 8 h post “pulsing” with MG132, Bafilomycin
Al(BafAl) or DMSOin Tex cells (n =35, one-way ANOVA). Datainb-handjare
presented as mean +SD. Datainiare presented as mean + SEM.
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Extended DataFig. 8| Effector molecule granzyme Bbut notinhibitory
receptor PD-lisenriched ininsoluble aggregates of Tex cells. a, Schematic
diagram of fractionate soluble and insoluble proteins in the cell lysates of Teff
and Tex cells 8 days post initial activationin vitro for mass spectrometry analysis.
Created in BioRender. Wang, Y. (2025) https://BioRender.com/n0Oibmgq.

b, Representative chromatograms of the retention time and intensity for
peptidesindicative of granzyme Bininsoluble and soluble protein. Raw
intensityison they-axis and retention timein minutesis on the x-axis. Each
coloredlinerepresentsafragmention associated with the peptide for

granzyme B.Solid linesindicate fragmentions used for quantitation. Dotted
linesrepresentinterferingions that were excluded for quantitation. The plot
onthe farright showed the fold change of granzyme Bin the insoluble over
soluble fractions in Tex and Teff cells. AA: Tex[Log2FC(insoluble/soluble)] -
Teff[Log2FC(insoluble/soluble)]. ¢, Representative chromatograms of the
retention time and intensity for peptidesindicative of PD-linthe insoluble
and soluble fractions. The fold changes of PD-lin the insoluble over soluble
fractionsin Tex and Teff cells are also shown.
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Extended DataFig.9|Moderate attenuation of Akt signaling but not PI3K
and mTOR pathways prevents T cell exhaustion without compromising
cellsurvival and proliferation. Mouse CD8' T cells were first activated in vitro
for 48 h, followed by chronic TCR stimulationin the presence of various
pharmacologicalinhibitors and the final downstreamanalysis. a-f, Representative
flow cytometry plots and statistics of the percentages of live cells (a), Ki67*

population (b), SLAMF6'TIM-3 population (c), IFNY TNFa* population (d),
CD44"CD62L" population (e) and CD107a production (f). For measuring cytokine
production (IFNy, TNFaand CD107a), cells were rested for two additional days
after 6-day treatment and restimulated with PMA/lonomycin (n = 4, one-way
ANOVA).Dataina-farepresented as mean + SD.
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Extended DataFig.10|See next page for caption.
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Extended DataFig.10 |Impact of deletion of TexPSR chaperonesonT cell
exhaustion. Experiments were performed usingin vitro exhausted T cells (a-g)
and LCMV modelinvivo (h).a, Expressions of the 10 candidate proteinsin T cell
exhaustion across 4 differentiation states as described in Extended Data
Fig.4d by mass spectrometry (n =35, one-way ANOVA). Data are presented as
mean (center line) and min to max (box bounds). b, Confirmation of CRISPR
knockout of respective genes by RT-PCR. ¢, Confirmation of CRISPR knockout
ofindicated genes at the protein level by flow cytometry. d, Bar plot of the
percentage of IFNY'TNFa* cells out of the total CD8" T cells 8 days post CRISPR-
Cas9 knockout of indicated genes and chronic stimulation (n = 3, experiment
wasrepeatedthreetimes).e, Representative flow cytometry plot and percentages

of SLAMF6 TIM-3" population over total live CD8" T cells after Hspas, Erola or
Hsp90bI knockout or control (n =3, one-way ANOVA). f, UMAP visualization of
Tex cellswith Hspas, Erola or Hsp90bI knockout or control T cells analyzed
with26 markers associated with T cell activation and exhaustionindicateding
by multi-spectral flow cytometry. g, Heatmap of expression pattern of 26 markers
across12 cell clusters. Datawas shown using all concatenated cells. h, gp96
expressionindifferent Tex subsets gated on CD44'PD-1' CD8" T cells from day
30LCMV Clone13infected wild type mouse spleens. Naive CD8' T cells were
CD44°'CD8" T cells from uninfected mice (n=5for naive CD8', n=10for Tz, Ty
andT,,.,, one-way ANOVA). Datain b-e and h are presented as mean + SD.
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Extended DataFig.11|Patients with high TexPSR signature in tumor-
infiltrating T cellsdo poorly inresponse toimmunotherapy. a, Overview of
CD8" T cell counts and subtype distributions across different cancer types
fromintegrated analysis of publicly available pan-cancer scRNA-seq datasets.
Left panel: totalnumber of CD8' T cells detected ineach cancer type, plotted
onalogarithmicscale. Middle left panel: sample countsin each cancer type,
plotted onalogarithmicscale. Middle right panel: number of independent
studies for each cancer type. Right panel: CD8' T cell subtype proportion.
BLCA:bladder urothelial carcinoma; BRCA: breast invasive carcinoma; CESC:
cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL:
cholangiocarcinoma; CRC: colorectal cancer; GIM: gastric and intestinal
malignancies; HNSC: head and neck squamous cell carcinoma; LC: lung cancer;
LIHC: liver hepatocellular carcinoma; OC: ovarian cancer; PAAD: pancreatic
adenocarcinoma; PDAC: pancreatic ductal adenocarcinoma; PRAD: prostate
adenocarcinoma; RCC/CRCC:renal cell carcinoma/clear cell renal cell carcinoma;
STAD: stomach adenocarcinoma; THCA: thyroid carcinoma; UCEC: uterine
corpusendometrial carcinoma. b, Heatmap showing the expression level of
TexPSRsignature genes across various T cell populations. ¢, Correlation of RNA
and protein expression fold changes of TexPSR signature genes between Tex

versus Teff cells from the in vitro exhaustion model. d, TexPSR signature scores
across different T cell subpopulations (two-sided Wilcoxon rank sum test).

e, UMAP embedding of scRNA-seq datafromT cells colored by annotated cell
types.Overlaid are RNA velocity-based trajectories, inferred with the Slingshot
algorithm, delineating two major differentiation pathways: Trajectory1(teal)
toward exhaustion and Trajectory 2 (orange) toward effector differentiation.
f.Signature scores along pseudotime for each trajectory. Trajectory 1 (left)
shows decreasing Naive and increasing Exhaustion and TexPSR scores, consistent
with anexhaustion trajectory. Trajectory 2 (right) shows dynamic changes

in TexPSR and Naive scores, indicative of analternative effector trajectory.
g,Kaplan-Meier survival curves for patients with liver cancer stratified by high
vs.low TexPSR signature, calculated from the CD8' T cell scRNAseq data. P values
were calculated using a univariate Cox proportional hazards model. h, TexPSR
scoresinscRNA-seq datasets of CD8 T cells from non-responders (NR) and
responders (R) inresponse to aPD-1combined with aCTLA-4 therapy for RCC
(NR:n=5354cellsfrom 6 patients, R:n=15207 cells from 9 patients). Data are
presented as mean + SEM, and statistical significance was determined using two-
sided Wilcoxon rank sum tests.



Heightened protein synthesis and aggregation coupled with futile protein quality control underlie a novel mechanism of CD8+ T cell exhaustion
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Extended DataFig.12| Working model of TexPSR as amechanistic driver of
CDS8' T cell exhaustion. The model presentedillustrates a cancer cell at the top
interacting with an exhausted T cell at the bottom through the MHC class I-T
cellreceptor complex. Theintracellular eventsinside of the Tex cells underscore
key novel findings from the study, which collectively elucidate a proteotoxic
stressresponse (PSR) driving T cell exhaustion, aphenomenon we term TexPSR.
TexPSRis characterized by an elevated rate of protein synthesis, the accumulation
ofiintracellular protein aggregates, the upregulation of specific endoplasmic
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reticulum (ER) chaperones, and an accelerated protein catabolism pathway.
Central tothese processes s the sustained activation of AKT signaling, which
orchestrates this complex proteotoxic environment. These findings not only
provide deeper insightinto the molecular mechanisms of T cell dysfunction
within the tumor microenvironmentbut also open avenues for possible
therapeutic strategies aimed at mitigating TexPSR to restoreimmune cell
functionincancerimmunotherapy. The figure was reproduced with the
permission of The Ohio State University.
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Data collection  Flow cytometry experiments were performed using Cytek Aurora flow cytometer or ImageStream imaging flow cytometer. Cell sorting
experiments were performed using Cytek Cell Sorter. Confocal microscopy images were collected by Olympus FV3000 microscope. Proteomics
data were collected using an Easy-nLC 1200 coupled to an Thermo Exploris 480 tandem mass spectrometer (Thermo Fisher) or an UltiMate
3000 UHPLC coupled to a Thermo Fusion tandem mass spectrometer (Thermo Fisher). Bulk RNAseq was performed using Illumina NovaSeq
platform with a depth of 50 million reads per sample.

Data analysis Flow cytometry analysis were performed using FlowJo (version 10.10) or OMIQ (www.omig.ai). Imaging flow cytometry data generated by
ImageStream were analyzed using IDEAS (v6.2) software. Numerical data were exported and analyzed using GraphPad Prism v10. Confocal
microscopy images were analyzed by OlyVIA (v4.2) software. Raw files of proteomics data were converted using MSConvert in the
Proteowizard package (version 3.0.20169) and then searched using EncyclopeDIA (version 2.12.31). Bulk RNA-seq sequences were checked,
trimmed, and filtered by using Fastp (v0.23.4). The filtered reads were mapped to the mouse reference genome mm10 using HISAT2 (v2.2.1),
and samtools (v1.17) was used to convert and sort BAM files. Lastly, the subread tool (v2.0.6) was used for gene quantification and generating
the raw expression matrix. Raw expression data was first log normalized, and the Limma R package (v3.56.2) was used to fit the model and
perform differential expression analysis. Scanpy package (v1.9.5) and scVI Python package (scvi-tools v1.0.4) were used for single-cell RNAseq
data analysis. RNA Velocities were computed using the scVelo toolkit (v0.3.3). Tidyverse (v1.3.1), EnrichR(https://maayanlab.cloud/Enrichr),
heatmaply R package (v1.4.2), Morpheus (https://software.broadinstitute.org/morpheus) were used for plotting figures.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.




Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Proteomics data is available at the MassIVE repository (MSV000098609) and through ProteomeXchange (PXD066433). Normalized protein expression data is
provided in Supplementary Table S3. Bulk RNA sequencing data from this paper is deposited to NCBI GEO database with identifier GSE303401. Scripts generated for
analysis are available at https://doi.org/10.5281/zenodo.16323779.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Use the terms sex (biological attribute) and gender (shaped by social and cultural circumstances) carefully in order to avoid
confusing both terms. Indicate if findings apply to only one sex or gender; describe whether sex and gender were considered in
study design; whether sex and/or gender was determined based on self-reporting or assigned and methods used.

Provide in the source data disaggregated sex and gender data, where this information has been collected, and if consent has
been obtained for sharing of individual-level data; provide overall numbers in this Reporting Summary. Please state if this
information has not been collected.

Report sex- and gender-based analyses where performed, justify reasons for lack of sex- and gender-based analysis.

Reporting on race, ethnicity, or | Please specify the socially constructed or socially relevant categorization variable(s) used in your manuscript and explain why
other socially relevant they were used. Please note that such variables should not be used as proxies for other socially constructed/relevant variables
groupings (for example, race or ethnicity should not be used as a proxy for socioeconomic status).
Provide clear definitions of the relevant terms used, how they were provided (by the participants/respondents, the
researchers, or third parties), and the method(s) used to classify people into the different categories (e.g. self-report, census or
administrative data, social media data, etc.)
Please provide details about how you controlled for confounding variables in your analyses.

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, genotypic
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study

design questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and
how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.
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published results with similar experimental models (Kwon et al., Science Immunology, 2022; Song et al., Cancer Discovery, 2025). The exact n
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were excluded from other experiments.
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Randomization  Age-matched mice were randomly assigned to experimental groups in tumor experiments and LCMV infection experiments. For genetically

modified mice (e.g., E8iCre-gp96 flox/flox), group allocation was based on genotype and therefore not randomized. Randomization was not
applicable to other experiments where different treatments were applied to materials derived from the same sample for each replicate for

>
QO
L
c
)
e,
o)
=
o
=
—
@
S,
o)
=
>
Q
wv
C
3
3
QO
<




paired comparisons.

Blinding Imaging flow cytometry, proteomics and RNAseq data collection and analysis was performed blindly. Mouse tumor and viral infection
experiments were performed blindly to treatment groups or genotypes. Blinding was not conducted for other experiments because the same
person performed the experiments and analyzed results.
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Antibodies used A detailed list of antibodies used in this study is provided in Supplementary Table S1 with fluorochrome, clone, dilution and source
the antibodies.

Validation All antibodies used in this study were purchased or obtained from well-recognized vendors and the validation from source vendor is
provided in Supplementary Table S1.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) MC38 cell line was purchased from Kerafast (RENH204-FP). MB49 cell line was purchased from Sigma-Aldrich (#5CC148).
MB49-gp33 cell line was kindly shared by Dr. Weiguo Cui at Northwestern University. B16-OVA cell line was generated as
described previously (Budhu et al., Sci Signal, 2017). HEK293T cell line was purchased from ATCC (#CRL-3216).

Authentication No further authentications were conducted in the laboratory.

Mycoplasma contamination All cell lines were tested negative for mycoplasma contamination.

Commonly misidentified lines  no commonly misidentified cell lines were used in the study.
(See ICLAC register)

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals Wildtype C57BL/6J mice (strain #000664) purchased from Jackson Laboratory. CD8-specific gp96 deficient mice were generated by
crossing E8i-Cre purchased from Jackson Laboratory (strain #008766) and Hsp90b1flox/flox mice previously generated and described
by our group (Yang et al., Immunity, 2007). P14 mouse was a gift from Dr. Weiguo Cui at Northwestern University. OT-1 (strain
#003831) and Rag2-/- (strain #033526) mice were purchased from Jackson Laboratory. 6-8-week-old mice were used for
experiments. All mice used in this study were housed at the Ohio state University animal facility. Ambient temperature was kept in a
range of 68-76 °F, relative humidity 30-70% and a 12-hour light/dark cycle (lights on from 6am to 6pm).

Wild animals No wild animals were used in this study.
Reporting on sex The results in this study are not restricted to one sex because both male and female mice were used and demonstrated similar
phenotypes.

Field-collected samples  No samples were collected from the field.

Ethics oversight All procedures were performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory




Ethics oversight Animals of the National Institutes of Health. The protocol was approved by the Committee on the Ethics of Animal Experiments of the
Ohio State University.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Plants

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

was applied-
Authentication Describe-any-atthentication-procedures foreachseed stock tised-ornovel-genotype-generated.—Describe-any-experiments-used-to

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.

Flow Cytometry

Plots
Confirm that:

|Z The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|Z| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

|Z| All plots are contour plots with outliers or pseudocolor plots.

g A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Instrument
Software

Cell population abundance

Gating strategy

To prepare single cell suspensions of mouse tumor samples, isolated tumors were chopped and washed with PBS before
incubation with Collagenase | (200 U/ml, Worthington #L.S004196) in serum-free RPMI-1640 for 30 min at 37 °C with gentle
agitation. After digestion, 2% BSA in PBS were added to cell suspensions to neutralize collagenase. Cell suspensions were
washed with PBS and filtered through a 70-um nylon filter. Single cell suspensions were centrifuged and resuspended in PBS
for downstream assays. For cell sorting, immune cells were enriched using mouse TIL CD45 positive selection kit (STEMCELL
#100-0350)

Dead cells were stained by Live/Dead fixable blue (Invitrogen #L23105) or Zombie UV (BioLegend #423108) at 4 °C for 15 min.
Cells were washed with FACS buffer twice and surface molecule staining antibody cocktail was applied for 30 minutes in 4 °C.
After incubation, cells were washed twice with FACS buffer and then fixed and permeabilized using Foxp3 fixation and
permeabilization kit (eBioscience #00-5523-00) overnight. After overnight fixation, cells were washed twice in the
permeabilization buffer, and the intracellular staining antibody cocktail was added to the cells. After 2 hours of room
temperature staining, cells were washed twice with FACS buffer and analyzed.

For protein aggregation staining, cells were washed with HBSS (Sigma-Aldrich #H6648) twice and stained with 100 nM NIAD-4
(Cayman #18520) or 50 uM CRANAD-2 (Cayman #19814) in HBSS for 30 min at 37 °C and 5% CO2. Cells were next stained by
Live/Dead fixable Near IR (Invitrogen #L34975) at 4 °C for 15 min, followed by fixation with 4% formaldehyde (BD
Biosciences) for 15 min and DAPI staining for 5 min at room temperature.

For stress granule analysis, cells were harvested and stained by Live/Dead fixable NIR, followed by fixation in BD CytofixTM
fixation buffer (BD Biosciences #554655) for 15 min and permeabilization using Foxp3 fix/perm kit for 30 min at room
temperature. Cells were then stained with anti-G3BP1 antibody (Proteintech #13057-2-AP) in perm buffer for 1 h at room
temperature and then FITC-conjugated anti-Rabbit antibody for 30 min. DAPI was added to the cell suspension and incubated
for 5 min.

Gating strategy for sorting antigen specific CD8+ T cells in LCMV models is described in Extended Data Fig. 3a. For in vitro
assays, cells were first identified by FSC-A/SSC-A scatters and then singlets based on FSC-A/FSC-H and SSC-A/SSC-H. Live cells
were gated based on the absence of vialibity dye staining and analyzed.

Cytek Aurora, Cytek Cell Sorter, ImageStream

FlowJo (v10.10), OMIQ (www.omig.ai), IDEAS (v6.2)

For sorting subpopulation of CD8+ T cells from spleens of LCMV models or tumors of MC38 or MB49 models, cells were
sorted using "purity" mode. Purity of post-sorted cells were checked by flow cytometry and was over 96%.

Gating strategy for sorting antigen specific CD8+ T cells in LCMV models is described in Extended Data Fig. 3a. For
experiments using in vitro stimulated mouse CD8+ primary T cells, cells were first identified by FSC-A/SSC-A scatters and then
singlets based on FSC-A/FSC-H and SSC-A/SSC-H. Live cells were gated based on the absence of viability dye staining and
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analyzed. For analyzing CD8+ T cells from mouse tumors or spleens, CD8+ T cells were first gated using FSC-A/SSC-A and then
FSC-A/FSC-H to exclude doublets. Live CD45+ were gated as total immune cells followed by identifying CD8+ T cells as CD3+
CD8+ CD4-. Antigen-specific CD8+ T cells were gated based on CD44hi cells.

|Z Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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