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Neutrophil profiling illuminates anti-tumor antigen-
presenting potency
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In brief

Single-cell RNA sequencing analyses of

neutrophils from 225 samples across 17

cancer types identify distinct clinically

relevant transcriptional states. Metabolic

analyses highlight the potential for

delivery of leucine-activated antigen-

presenting neutrophils in anti-tumor

therapy.
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SUMMARY
Neutrophils, the most abundant and efficient defenders against pathogens, exert opposing functions across
cancer types. However, given their short half-life, it remains challenging to explore how neutrophils
adopt specific fates in cancer. Here, we generated and integrated single-cell neutrophil transcriptomes
from 17 cancer types (225 samples from 143 patients). Neutrophils exhibited extraordinary complexity,
with 10 distinct states including inflammation, angiogenesis, and antigen presentation. Notably, the anti-
gen-presenting program was associated with favorable survival in most cancers and could be evoked by
leucine metabolism and subsequent histone H3K27ac modification. These neutrophils could further invoke
both (neo)antigen-specific and antigen-independent T cell responses. Neutrophil delivery or a leucine diet
fine-tuned the immune balance to enhance anti-PD-1 therapy in various murine cancer models. In summary,
these data not only indicate the neutrophil divergence across cancers but also suggest therapeutic oppor-
tunities such as antigen-presenting neutrophil delivery.
INTRODUCTION

Neutrophils are believed to be the cells that achieve the most

rapid defense against pathogens.1 They can sense diverse can-

cer signals, such as inflammation and wounding, to initiate the

chemotaxis module toward the tumor microenvironment

(TME).2 However, human neutrophils are usually too short-lived

to be profiled (half-life: 6–8 h),3 rendering most single-cell RNA

sequencing (scRNA-seq) approaches unable to achieve high-

throughput profiling of these cells. Due to their lower mRNA

content (neutrophils: 0.33 mg; macrophage and monocytes:

2.55 mg per million cells),4 our understanding of the transcrip-

tional diversity and spatiotemporal heterogeneity of human

neutrophils remains rudimentary, despite the universal distribu-

tion of these cells across organs and tumors throughout

the body.
1422 Cell 187, 1422–1439, March 14, 2024 ª 2024 Elsevier Inc.
In the field of cancer immunology, the paradox of whether

neutrophils are generally suppressive or protective remains un-

resolved. Tumor-associated neutrophils are long believed to be

immunosuppressive5,6 and to exacerbate patient outcomes.7–9

However, these cells were recently shown to kill cancer cells by

releasing active elastase,10 nitric oxide synthase,11 or reactive

oxygen species (ROS).12 Alternatively, neutrophils also har-

bored anti-tumor immune phenotype that promotes autologous

T cell responses13 or interferon-related immunostimulatory ef-

fects.14 These seemingly contradictory data raise critical but

poorly understood questions around population composition

and which subsets drive pro- or anti-tumor effects. Systemati-

cally decoding the cellular diversity of tumor-infiltrating neutro-

phils will identify their diverse gene expression patterns as well

as their niche framework. In this context, single-cell profiling is

uniquely suited for the characterization of neutrophil states and
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provides the opportunity to create a data-driven map of neutro-

phil ontology.

To address this challenge, we here designed a neutrophil

profiling strategy and generated the single neutrophil transcrip-

tomes from 225 samples collected from 143 patients across 17

cancer types, including paired metastases from selected can-

cers. We found that neutrophils exhibit a complex and diverse

transcriptional profile with 10 distinct cell states, among which

three were potentially dominant across various cancer types,

including inflammation, angiogenesis, and antigen presentation.

In particular, antigen-presenting neutrophils showed unique im-

munophenotypes and metabolic features, which can induce

T cell neoantigen reactivity. Our study not only generates cancer

neutrophil transcriptomes but also unravels potential therapeutic

opportunities such as antigen-presenting neutrophil delivery.

RESULTS

Neutrophils preferably infiltrate into certain
cancer types
The extent of neutrophil infiltration into solid tumors varies

widely,15 but there still exists no consensus on the exact cancer

types and infiltration level. To explore the infiltration patterns and

choose the appropriate cancer types, we tested 8 common im-

mune quantification algorithms and analyzed The Cancer

Genome Atlas (TCGA) covering 8,766 samples across 31 solid

cancers (STARMethods). We developed a consensus neutrophil

infiltration score based on three algorithms,16–18 which revealed

strong tissue-selective patterns of neutrophil infiltration that

could be clustered into 3 subtypes (29.6% high, 30.0% hetero-

geneous, and 40.4% low; Figures 1A and S1A). For example,

neutrophils show high infiltration in lung and kidney cancers

and intermediate infiltration in gastrointestinal cancers, which

was consistent in another pan-cancer dataset, Clinical Proteo-

mic Tumor Analysis Consortium (CPTAC)19 (Figures S1B and

S1C). By comparing neutrophil levels among immune sub-

types,20,21 we observed preferential neutrophil infiltration in in-

flammatory or fibrotic suppressive TMEs (Figure 1B), in agree-

ment with previously reported neutrophil infiltration patterns

and functions.15 Together, these data highlighted the diversity

of neutrophil infiltration depending upon the tissue and cancer

types, providing a basis for our subsequent neutrophil sampling

strategy.

Following our initial findings, we devised a standardized sam-

pling strategy focused on cancer types with high or medium

neutrophil infiltration (sample statistics, Figure S1D), ensuring

the inclusion of matched blood, adjacent normal tissues, and

metastasis samples when available. Considering the short half-

life and data quality, we further designed a neutrophil sorting

protocol (Figure S1E) and an in silico strategy (STAR Methods).

We successfully sequenced 103 samples from 64 patients that

passed quality control (Table S1), including primary and meta-

static samples as well as matched normal tissues and blood

(STAR Methods). We further applied the standardized pipeline

on published datasets and finally generated a neutrophil map

of 225 samples from 143 patients across 17 cancer types,

among which 12 cancer type data (70.59%) were newly gener-

ated or in-house (Figure 1C). After harmonizing the data batches,
excluding the low-quality cells, and balancing the RNA dropouts,

1,79,908 single neutrophils finally passed quality control, of

which 79.29% data were in-house or freshly released. Together,

our single-cell profiling constitutes a potential resource for

neutrophil investigation (available at http://www.pancancer.cn/

neu/).

Transcriptional signatures across cancers
To decode the transcriptional signature, we clustered neutro-

phils and noted high heterogeneity across cancer and tissue

types (Figures 1D and S1F). We observed 10 distinct states

composed of S100A12+, HLA-DR+CD74+, VEGFA+SPP1+,

TXNIP+, CXCL8+IL1B+, CXCR2+, IFIT1+ISG15+, MMP9+,

NFKBIZ+HIF1A+, and ARG1+ neutrophils (Figures 1E and 1F;

Table S2). For example, HLA-DR+CD74+ subset showed high

expression of major histocompatibility complex (MHC)-II mole-

cules and universal infiltration across cancers. Conforming to

the neutrophil biology,15 we also identified clusters potentially

representing inflammatory response (CXCL8+IL1B+) and specific

chemotaxis (CXCR2+) features (Figure 1F). By decoding neutro-

phil transcriptome into transcriptional programs (STAR

Methods), we consistently confirmed their featured activation

modes such as chemotaxis or inflammation (Figure S1G). Given

the neutrophil single-cell profiles were only reported in certain

cancer types, we computed the correlation with previously

defined neutrophil states and subpopulations (STAR Methods)

of 5 independent studies.7,22–25 Some subsets of our data

showed strong consistency with published states such as

IFIT1+ISG15+ and hNeutro2 (Figure S1H). Together, our neutro-

phil map not only captured known neutrophil subpopulation fea-

tures but also revealed potentially uncharacterized neutrophil

subsets.

Molecular divergence and survival correlation
To explore the principles governing neutrophil clades, we

computed the tree structure26 and observed the scattered

tree leaves of distinct subsets (Figure 2A). Based on Ro/e

analysis (ratio of observed cell number to expected cell number)

(Figure 2B), HLA-DR+CD74+ and VEGFA+SPP1+ neutrophils

were the most cancer-enriched subsets overall (Figures 2B

and S2A) but showed cancer type preferences. HLA-

DR+CD74+ neutrophils were enriched in non-small cell lung

cancer (NSCLC), bladder cancer (BLCA), and ovarian cancer

(OV) while showing decreased infiltration in renal cell carcinoma

(RCC) and oral squamous cell carcinoma (OSCC). In contrast,

VEGFA+SPP1+ neutrophils showed sparse infiltration in

NSCLC, BLCA, and OV but were enriched in RCC and stomach

adenocarcinoma (STAD). These data were partly validated by

flow cytometry (n = 24, see Table S1) and multiplex immunohis-

tochemistry (mIHC) using an independent multi-cancer-TMA

cohort (n = 68, see Table S1) comprising 8 cancer types,

including breast invasive carcinoma (BRCA), colon adenocarci-

noma (COAD), intrahepatic cholangiocarcinoma (ICC), hepato-

cellular carcinoma (HCC), STAD, NSCLC, RCC, and pancreatic

adenocarcinoma (PAAD) (Figures 2C–2E and S2B).

To explore the association of neutrophil subsets with patient

survival, we first analyzed the neutrophil subset signatures

based on the TCGA pan-cancer dataset. Among the subsets,
Cell 187, 1422–1439, March 14, 2024 1423
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Figure 1. The generation of a pan-cancer single neutrophil atlas

(A) Neutrophil consensus infiltration level of pan-cancer samples (TCGA dataset), showing the neutrophil infiltration level (left), cancer types (middle), and ranked

consensus score (right).

(B) Neutrophil consensus infiltration level according to immune subtypes (TCGA dataset).20,21 ***p < 0.001; ANOVA test.

(C) Number of included patients and cells (green, in-house data; gray, public data). Healthy tissue controls were excluded.

(D) The UMAP plot (upper panel) and neutrophil proportion (lower panel).

(E) Gene expression heatmap (top 50 expressed) in neutrophil subsets.

(F) Enriched pathways of each neutrophil subset. The signature was from Kyoto Encyclopedia of Genes and Genomes (KEGG) and Hallmark databases.

See also Figure S1 and Tables S1 and S2.
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VEGFA+SPP1+ subset was linked with the worst patient

outcome (Figures 2F and S2C; 8-cancer-TMA cohort), whereas

HLA-DR+ was linked with the best. We further corroborated

the prognostic relevance of HLA-DR+ neutrophils through

mIHC in an independent 8-cancer-TMA cohort (Figure 2G, n =

1,116; HCC, n = 357; COAD, n = 93; NSCLC, n = 90; STAD,

n = 85; RCC, n = 150; OV, n = 160; BRCA, n = 129; BLCA, n =

52). These data indicated that HLA-DR+ neutrophils may repre-

sent a key anti-tumor neutrophil subset across a majority of can-

cer types.

We next compared cytokine profiles of distinct neutrophil sub-

sets (Figure 2H). HLA-DR+CD74+ neutrophils showed high

CCL5, which can recruit T cells.27 IFIT1+ISG15+ neutrophils

were associated with high expression of PD-L1 (CD274), indi-

cating its immunosuppressive role. Only HLA-DR+CD74+ neutro-

phils showed specific enrichment of MHC class II molecules
1424 Cell 187, 1422–1439, March 14, 2024
such as HLA-DRA and HLA-DRB1 (Figure 2I). However, almost

all neutrophil subsets expressed high levels of MHC class I

molecules, aligning with their consensual expression on all

nucleated cells.28 In parallel, the immunophenotypic signature29

of neutrophil subsets showed remarkable diversity (Figure 2J),

whereas almost all subsets showed high aging signature, sup-

porting the notion that tumor-associated neutrophils are mostly

in a maturation state.2 Reciprocally, we also identified the ubiq-

uitous cell cycle gene expression among almost all subsets and

the enrichment of interferon-related genes in IFIT1+ISG15+ neu-

trophils (Figure S2D). Given the known circadian features of

neutrophil biology,30,31 we further compared the phenotypic sig-

natures sampled at different times of day and observed higher

maturation and chemotaxis levels of neutrophils at daytime (Fig-

ure S2E). These data collectively highlighted the subset-specific

molecular hallmark of neutrophils.
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Given neutrophils’ capacity against pathogens, we compared

cell states between cancer and inflammatory conditions. As a

result, IFIT1+ISG15+ neutrophils showed an expanded propor-

tion in chronic pancreatitis and cholecystitis, which also ex-

hibited high infiltration in pancreatic and gallbladder cancers

(Figure S2F). Likewise, neutrophils in COVID-19 lung samples

showed a specific spectrum of states, such as enrichment

of inflammatory NFKBIZ+HIF1A+ subsets, which was also

observed in lung cancer. This result may imply the shared tis-

sue-restricted reprogramming across diverse disease condi-

tions or a causal resemblance between inflammation and

cancer in indicated organs. In contrast, certain subsets are

highly tumor-specific (i.e., HLA-DR+CD74+ and VEGFA+SPP1+

subsets), indicating the TME-specific stimuli on reprogramming

neutrophil states. Taken together, our data revealed the potential

preference of neutrophil infiltration (i.e., HLA-DR+CD74+ and

VEGFA+SPP1+ subsets) into certain cancer types and indicated

the existence of cancer-imprinted transcriptional programs.

Maturation and metabolism states
Neutrophils have long been regarded as mature and terminally

differentiated cells. However, it remains unknown how the

diversity of their maturation states is achieved. To address this

question, we applied a vector-field-based deep learning

algorithm to infer the progressive steps of lineage specification

and divergence.32 We observed continuous differentiation along

neutrophil states, with the most terminal pseudotime value

observed for HLA-DR+CD74+ neutrophils (Figures 3A and S3A);

this pattern was replicated by other algorithms, including

monocle3,33 CytoTRACE,34 and Slingshot35 (Figures 3A and

S3A). We ranked neutrophils according to both their tumor spec-

ificity and pseudotime, finding that HLA-DR+CD74+ neutrophils

potentially remained at the terminus (Figure 3B). To validate this

finding, we first evaluated the maturation markers CD11b and

CD1636 using flow cytometry (Figure 3C) in intratumor neutrophils

from 24 patients with 8 cancer types (Table S1). As a result,

the HLA-DR+ neutrophil subset showed significantly higher

CD11b and CD16 expression. We subsequently confirmed the

enhanced maturation markers’ (CD11b and MPO)36 expression

in HLA-DR+ neutrophils using mIHC across cancers (Figures 3D

and 3E). Also, transcription factor RFX5 showed specific activa-
Figure 2. Molecular features and survival correlation of neutrophils

(A) Neutrophil tree structure according to cell subsets (left) and cancer types (rig

(B) Neutrophil Ro/e (ratio of observed cell number to expected cell number) in diffe

right heatmap represents the Ro/e in each cancer type. Ro/e > 2 was normalized

(C) The flow cytometry (first and second panel) and correlations between infiltratio

seq and flow cytometry. The y axis represents the proportion estimated by flow cy

subset Ro/e estimated by scRNA-seq. n = 24.

(D) Imaging of HLA-DR+ neutrophils in NSCLC, BRCA, and HCC (HLA-DR+ neut

(SPP1+ neutrophil enriched cancer types) using mIHC. Scale bars, 30 mm.

(E) Correlations between infiltration of HLA-DR+ (left) or SPP1+ neutrophil (right) b

by mIHC. The x axis represents the neutrophil subset Ro/e estimated by scRNA

(F) The prognostic value of neutrophil signature (TCGA dataset), showing the ha

(right). The left and right sides of the x axis both represent positive values, as all

(G) Survival analyses of HLA-DR+CD15+ neutrophil in 8-cancer-TMA cohort cov

Proportion of HLA-DR+CD15+ to CD15+ cells was analyzed. p values were deter

(H–J) Expression profiles of differentially expressed cytokines (H), MHC molecule

See also Figure S2 and Table S1.

1426 Cell 187, 1422–1439, March 14, 2024
tion among the HLA-DR+ subset, consistent with ChIP-seq and

knockdown/overexpression assays (Figures S3B–S3E; STAR

Methods). Taken together, these data indicated that HLA-DR+

neutrophilswerepotentiallyoneof the terminallymatureneutrophil

subsets.

A critical question is how pathway activity varies across tumor

neutrophil subsets. To address this issue, we measured the

pathway variance and observed the strong diversity of metabolic

pathways (Figure S3F), which supports the potential metabolic

regulation of neutrophil identity maintenance. Then, we quanti-

fied the metabolic pathway activity of the neutrophil subsets

(Figures 3F and S3G; Table S3). Notably, HLA-DR+ neutrophils

showed remarkable enrichment of amino acid metabolism (i.e.,

valine, leucine, and isoleucine, Figure 3F). In parallel, the activa-

tion of vitamin metabolism and glycan metabolism were domi-

nant among the immunosuppressive VEGFA+SPP1+ neutrophils.

Together, these results supported the possibility that tumor neu-

trophils were metabolically coordinated, raising the idea that

amino acid metabolism primes the HLA-DR programs.

Leucine metabolism governs the epigenetics of the
antigen-presenting machinery
To systematically examine the effect of amino acids on neutro-

phils, we designed an in vitro screening strategy comprising all

20 amino acids and investigated their impact on antigen presen-

tation (Figure 4A) in circulating neutrophils from healthy donors

(STAR Methods). Particularly, leucine upregulated HLA-DR (Fig-

ure 4B) and costimulatory molecules such as CD80 (Figure 4C).

Although arginine slightly upregulated HLA-DR, it cannot impact

on costimulatory molecules (Figure S4A). We further expanded

our analysis of leucine on the spectrum of antigen presentation

processes by using PCR array analysis. Notably, leucine signifi-

cantly promoted the gene expression ofMHC-II complex assem-

bly (Figure 4D), enhanced antigen processing protease (Fig-

ure 4E), and facilitated antigen-loading processes (Figure 4F).

We confirmed that intracellular leucine levels did increase upon

leucine treatment and that these effects were not due to contam-

ination with other antigen-presenting cells (Figure S4B). RNA-

seq analyses also confirmed the impact of leucine on MHC-II

but not MHC-I (Figures 4G, S4C, and S4D). We also observed

that leucine increased the in vitro survival of neutrophils
ht) using TooManyCells.26

rent cancer types. The left dots represent the Ro/e of pan-cancer samples. The

to 2.

n of HLA-DR+ (third panel) or SPP1+ neutrophil (fourth panel) based on scRNA-

tometry. Cells were gated on CD66b+ cells. The x axis represents the neutrophil

rophil enriched cancer types) and SPP1+ neutrophils in STAD, RCC, and ICC

ased on scRNA-seq and mIHC. The y axis represents the proportion estimated

-seq. n = 68.

zard ratio value (left) and the �log (p value) of the neutrophil subset signature

�log (p value) are greater than zero.

ering COAD, NSCLC, HCC, STAD, RCC, OV, BRCA, and BLCA using mIHC.

mined by log-rank test. For sample information, see Table S1.

s (I), immunophenotypes, and signatures (J).
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Figure 3. HLA-DR+ neutrophils are terminally differentiated and metabolically reprogrammed

(A) Differentiation state estimated by scTour, CytoTRACE, monocle3, and Slingshot (STAR Methods).

(B) Neutrophil subsets ranked by cancer specialty (Ro/e) and differentiation state (pseudotime by scTour) (upper panel) and correlation between cancer specialty

(Ro/e) and pseudotime (lower panel). The dot size represents the Ro/e value of each cell subset.

(C) Flow cytometry of CD11b and CD16 mean fluorescence intensity (MFI) in HLA-DR+ and HLA-DR- neutrophils isolated from 24 tumor samples from 8 cancer

types. **p < 0.01, ***p < 0.001, paired Student’s t test. n = 24.

(D) CD11bhigh and MPOhigh neutrophil proportion among SPP1+CD15+, HLA-DR-CD15+, and HLA-DR+CD15+ neutrophils using mIHC in the multi-cancer-TMA

cohort. *p < 0.05, **p < 0.01, Student’s t test. n = 68.

(E) CD11b and MPO intensity in HLA-DR+ and HLA-DR- neutrophils using mIHC in the multi-cancer-TMA cohort. Scale bars, 30 mm.

(F) Amino acid metabolism pathway activity of neutrophil subsets determined by scMetabolism.37

See also Figure S3 and Tables S1 and S3.

ll
Article
(Figure S4E). Among the matched clinical samples, the leucine

concentration also showed a strong positive correlation with

the HLA-DR+ neutrophil signature (Figure S4F; STAR Methods).

Collectively, these data supported the notion that leucine

potently primes the neutrophil antigen-presenting program.

To probe how leucine feeds the metabolome and drives the

antigen-presenting program, we performed the untargeted me-

tabolomics and observed strong differences in ATP and fatty

acid production (Figures 4H, S4G, and S4H; Table S4), partly

congruent with the literature.38 Considering that ATP generation
mainly occurs in the mitochondria,39,40 we hypothesized that

leucine may trigger functional or phenotypic remodeling via

mitochondria. Indeed, leucine administration caused mitochon-

dria aggregation and altered phenotypes (i.e., mitochondrial

quality, Ca+, and ROS production) (Figures 4I and S4I–S4L). To

test the dynamic impact of leucine on mitochondria, we exam-

ined the real-time changes in oxygen consumption rate (OCR)

and observed that leucine stimulation significantly augmented

the mitochondrial OCR (Figure 4J). Transmission electron micro-

scopy (TEM) analysis showed that leucine treatment could
Cell 187, 1422–1439, March 14, 2024 1427
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induce specific morphological features such as longer mito-

chondrial length and more pseudopods on the membrane

(Figures 4K and S4M), indicating the increased intercellular con-

tact potential.41 These data were partly in line with the reported

role of mitochondrial metabolism in regulating professional anti-

gen-presenting cells.42

Given the complexity of the mitochondrial respiration and

electron transport chain machinery, we explored the causal ef-

fect of leucine on specific mitochondrial subcomponents. By

quantifying the mitochondrial respiration signature of single

HLA-DR+ neutrophils (Figure 4L), we observed that complex I,

which is capable of transferring electrons from reduced nicotin-

amide adenine dinucleotide (NADH) and producing nicotinamide

adenine dinucleotide (NAD),43 showed higher activity upon

leucine administration. However, complex III and IV signature

activity was weak or moderate. This observation was supported

by the stronger output of NAD by leucine-treated neutrophils

(Figure S4N). We therefore inhibited the complex I activity and

observed decreased mitochondrial membrane state and

HLA-DR+ neutrophil proportion (Figures 4M and S4O). Other

mitochondria respiration inhibitors also showed coherent results

(Figure S4P). Conversely, NAD supplementation caused higher

HLA-DR intensity (Figure S4Q), further confirming the mitochon-

drial respiration-dependent function of leucine in the HLA-DR

program.

We further asked how leucine was catabolized and enhanced

HLA-DR expression. We initially fed neutrophils from healthy

donor blood with 13C-labeled leucine and found that leucine

was catalyzed into acetyl-CoA, entered the tricarboxylic acid

(TCA) cycle, and generated an increased amount of glutamate

and glutamine (Figure 4N), using the reported catabolism

route.44 Consistently, CoA biosynthesis signature was primed

during leucine treatment (Figure S4R), and the acetyl-CoA acti-
Figure 4. Leucine primes HLA-DR+ neutrophil generation through met

(A) In vitro screening strategy of 20 amino acids to explore their correlation with

(B) HLA-DR+ neutrophil proportion under the stimulation of each amino acid (co

leucine and control conditions. Neutrophils were sorted from healthy donors’ blo

(C) Comparison of CD80, CD86, and CCR7 expression on neutrophils between l

(D–F) Relative RNA expression of MHC-II complex assembly genes (D), antigen pr

array. HLA-DRB2, other HLA-DPA family genes, other HLA-DPB family genes, an

n = 4.

(G) MHC class II signature of RNA-seq in leucine-treated and control groups. Th

(H) Metabolite comparison between leucine-treated neutrophils and control group

was regarded as statistical significance (highlighted in gray). The x axis represen

(I) Mitochondrial aggregation levels using flow cytometry (monomer, fluorescein is

group. n = 5.

(J) Real-time oxygen consumption rate (OCR) between leucine-treated neutroph

(K) Mitochondria imaging by transmission electron microscopy of leucine and co

(L) Mitochondrial respiration complex signature based on scRNA-seq data of HL

(M) Mitochondrial respiration complex I inhibition reduced HLA-DR+ proportion.

(N) 13C-labeling of leucine showing its catabolism into acetyl-CoA, TCA cycle, an

(O) The leucine acetyl-CoA-dependent regulation of HLA-DR+ neutrophils. AcCo

(P) Histone H3K27ac level between control, leucine-treated, and AcCoAa (AcCo

(Q) Heatmap of H3K27ac peaks of leucine and control groups using CUT&Tag. n

(R and S) The H3K27ac, H3K27me3, andH3K4me3 coverage (R) and score compa

from the GO gene set database. Replicates were merged for visualization.

(T) H3K27ac modification on HLA-DRA and HLA-DQB1 locus of leucine and con

Data in the bar plots are presented as mean ± standard deviation (B–F, I, M, O,

***p < 0.001; Student’s t test (B–F, I, M, O, and P), paired Student’s t test (G), an

See also Figure S4 and Table S4.
vator significantly upregulated HLA-DR (Figure 4O). Acetyl-

CoA inhibition significantly reduced HLA-DR level while its resto-

ration rescued HLA-DR, indicating the acetyl-CoA-dependent

regulation on HLA-DR. Given the known link between acetyl-

CoA and histone H3 lysine 27 acetylation (H3K27ac),45–47 we

examined the total H3K27ac level and observed the enhanced

H3K27ac upon leucine treatment (Figure 4P), without changes

in histones H3 themselves (Figure S4S). Further, CUT&Tag

showed significantly upregulated H3K27ac on MHC-II genes

(Figure 4Q), but not H3K27me3 and H3K4me3 (Figures 4R and

4S). These data supported the notion that leucine can impact

H3K27ac and thereby activate MHC-II genes (i.e., HLA-DRA

and HLA-DQB1), its transcription factor, and its regulatory

element (i.e., MHC-II super-enhancer48) (Figures 4T and S4T).

Consistently, the chromatin accessibility of MHC-II genes

was also enhanced by leucine treatment (Figure S4U). Overall,

our data pointed to the dependency of leucine catabolism

for antigen-presentingmachinery initiation throughmitochondria

modeling and metabolism-epigenetic regulation such as the

acetyl-CoA/H3K27ac/MHC-II axis.

Antigen-presenting neutrophils spatially link with and
fuel T cell responses
Because HLA-DR+ neutrophils favor prognosis, we asked about

themechanisms underlying their potential anti-tumor effects.We

first performed bulk RNA-seq of matched tumor samples, de-

convoluted18 the immune cell profile, clustered the immune cell

proportions, and observed patterned neutrophil-T cell infiltration

profiles (Figures 5A and S5A). In particular, HLA-DR+ neutrophils

co-localized with a broad spectrum of anti-tumor T cell subsets

(i.e., CD4+ effector memory T cells, CD8+ effector memory

T cells, and CD8+ central memory T cells). We fetched 50 spatial

transcriptomics datasets covering 1,78,330 spots derived from 9
abolic-epigenetic regulation

neutrophil immunophenotypes.

ntrol, LPS alone). The right panel shows the HLA-DR level neutrophils under

od. n = 3.

eucine and control groups. n = 4.

ocessing protease genes (E), and MHC-II antigen-loading genes (F) using PCR

d other HLA-DQA family genes were excluded due to low expression (CT > 35).

e signature was from Gene Ontology (GO) database. n = 4.

. The y axis represents the variable importance in projection (VIP) value. VIP > 1

ts the log (fold change) of each metabolite. n = 4.

othiocyanate (FITC); aggregation, PE) in leucine-treated neutrophils and control

ils and control. n = 3.

ntrol groups. Scale bars, 2 mm.

A-DR+ neutrophils. The signature was from the wikipathways database.

n = 3.

d glutamine. Replicates were merged for analysis. n = 4.

Aa, AcCoA activator; AcCoAi, AcCoA inhibitor. n = 4.

A activator) groups. The MFI was determined by flow cytometry. n = 5.

= 3. Replicates were merged for visualization.

rison (S) onMHC-II gene transcription start site (TSS). TheMHC-II gene list was

trol groups. n = 3.

and P) and mean ± standard error (J). ns, not significant, *p < 0.05, **p < 0.01,

d Wilcox test (R–T).

Cell 187, 1422–1439, March 14, 2024 1429



A

D E F

G

I J

H

CB

Figure 5. HLA-DR+ neutrophils and related T cell responses

(A) Correlation between immune cell types (estimated from matched RNA-seq) and neutrophil subsets. n = 25.

(B) Spatial co-localization between HLA-DR+ neutrophil signature and CD8+ T cells in RCC, OV, and CRC samples. ***p < 0.001; Spearman-Rho test.

(C) T cell TNFa intensity (gated on CD3+ T cells) coculturing with tumor-infiltrated HLA-DR+ neutrophils or none. The bar plot is mean ± standard deviation.

Neutrophils and autologous T cells were sorted from tumors (HCC and COAD) and matched blood samples respectively. n = 4. ns, not significant, ***p < 0.001;

Student’s t test.

(D) MHC-II allele quantification of tumor-infiltrating neutrophils based on scRNA-seq data.

(E) T cell reactiveness (4-1BB intensity) when coculturing with leucine-treated neutrophils (HLA-DR+ neutrophils), non-treated neutrophils (HLA-DR- neutrophils),

autologous DCs, or negative controls. MHC-II peptides (gp100, 44–59; CMV, 65–71) were added.

(F) T cell cytotoxicity (TNFa intensity) when coculturing with HLA-DR+ neutrophils fed with neoantigens. Autologous leucine-induced HLA-DR+ neutrophils,

autologous DCs, and T cells were sorted from healthy donors’ blood. n = 3.

(legend continued on next page)
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cancer types (BRCA, SKCM, CESC, COAD, OV, PRAD, LGG,

HCC, and RCC, Table S5) and computed the correlation be-

tween HLA-DR+ neutrophils and major immune lineages (STAR

Methods). CD8+ T cells and CD4+ T cells ranked highly among

the major lineages (Figure S5B). Of note, in RCC samples

(GSM5924040), CD8+ T cells showed strong co-localization

with HLA-DR+ neutrophils, with similar results observed in OV

(10x) and colorectal cancer (CRC) (OEP001756) samples (Fig-

ure 5B). These observations implied that antigen-presenting

neutrophils are spatially linked with T cells.

To decode the effect of HLA-DR+ neutrophils on T cells, we co-

cultured neutrophil subsets (sorted from the tumor) with autolo-

gous CD3+ T cells (sorted from PBMCs) for 3 days, indicating

that HLA-DR+ neutrophils can promote T cells to express TNFa

(Figure 5C). Given their capacity for antigen presentation, we

then quantified the allele-specific HLA gene expression at the

single-cell level (Figures 5D and S5C). HLA-DRB1, HLA-DPA1,

and HLA-DQB1 showed high frequency, where these loci were

reported with T cell epitope restricted reactiveness (HLA-

DRB1*09:01)49 or cytokine production (HLA-DPB1*05:01).50

We further confirmed the antigen uptake ability of HLA-DR+ neu-

trophils using OVA fluorescent proteins (Figures S5D and S5E).

We hence fed the neutrophils with human MHC-II antigens

(gp100, 44–59; CMV, 65–71) and cocultured them with autolo-

gous T cells (Figure 5E). Notably, sorted HLA-DR+ neutrophils

gave rise to the antigen-specific response of autologous

T cells, althoughmoreweakly than positive controls (DCs). These

data naturally raise the possibility that HLA-DR+ neutrophils are

likely to present tumor neoantigens and elicit reactive T cell re-

sponses. To test this hypothesis, HLA-DR+ neutrophils were

incubated with mutation-derived neoantigens (TP53, KRAS,

IDH2, and BAP1)51–53 for 24 h and were further cocultured with

autologous CD3+ T cells (Figure 5F). We observed the stimulated

T cell responses of most of the neoantigens, although the re-

sponses were variable across donors. For example, KRASG12V

neoantigen (MTEYKLVVVGAVGVGKSALTIQLI)53 was associ-

ated with strong neutrophil-triggered T cell activation in donors

2 and 3. Our reported KRASG12D neoantigen (LVVVGADGV)52

also led to reactive T cell responses. Focusing on these two pep-

tides, we performed coculture in which the ratio of neutrophil to

T cells and the concentration of peptides were controlled in a

donor with HLA�DRB1*07:01 and HLA�A*02:01 types (Fig-

ure 5G). When the ratio of HLA-DR+ neutrophils to T cells was

10:1, a potent neoantigen response of T cells was activated

with KRASG12V or KRASG12D neoantigens. By sequencing the

TCR repertoire of KRASG12V neoantigen-activated T cells, we

observed strong reactive TCR gene rearrangement with HLA-

DR+ neutrophil stimulation (negative control, T cell alone; posi-
(G) T cell reactiveness (4-1BB intensity) when coculturing with HLA-DR+ neutro

KRASG12D (LVVVGADGV) at different NEU:T ratio and peptide concentration.

(H and I) TCR rearrangement (H) and TCR clonotype proportion (I) of T cells st

(MTEYKLVVVGAVGVGKSALTIQLI). CD3/CD28 dynabeads were simultaneously

Samples failing quality control were excluded.

(J) Association between HLA-DR+ neutrophils (HLA-DR+CD15+) and reactive C

covering 8 cancer types. Scale bars, 30 mm. The right panel represents the numbe

n = 62 (low-quality images excluded). ***p < 0.001; Student’s t test.

See also Figure S5 and Table S5.
tive control, autologous DCs) (Figures 5H and S5F), which was

comparable with DCs (Figure 5I). We finally authenticated the

co-localization of reactive T cells (CD39+CXCL13+CD4+ T cells

and CD39+CXCL13+CD8+ T cells) and antigen-presenting neu-

trophils (HLA-DR+CD15+ neutrophils) in the multi-cancer-TMA

cohort (Figures 5J and S5G). Together, these data indicated

that antigen-presenting neutrophils can effectively generate

reactive T cell responses.

We next asked whether neutrophil-elicited T cell activation is

dependent on the antigen. By coculturing leucine-stimulated

neutrophils with autologous T cells from healthy donors

(removing leucine after 24 h of neutrophil stimulation), we

observed consistent but slightly weaker T cell activation (Fig-

ure S5H) and killing ability for cell lines derived frommultiple can-

cers (Figure S5I), raising the hypothesis that HLA-DR+ neutro-

phils activate T cells in a nonspecific manner. Subsequently,

we tested distinct coculture methods (i.e., in a medium, in a

transwell chamber, or directly) and examined the T cell activation

levels (Figure S5J). Interestingly, only direct coculture was asso-

ciated with T cell activation, whereas coculture via medium or

transwell system was not. We also neutralized neutrophil-

related cytokines but did not observe T cell immunophenotype

changes (Figure S5K). These results indicated that HLA-DR+

neutrophils may directly activate T cells mainly via ligand-recep-

tor interactions.

To identify the ligand that drives T cell activation, we ranked

the in silico results according to interaction frequency and

gene expression percentage and focused on the candidate li-

gands such as ICAM1 and CXCL10 (Figures S5L and S5M).

Upon inhibiting the ICAM1 and its interaction with ITGAL, we

observed significantly reduced T cell activation (Figure S5N).

Meanwhile, ICAM1 and HLA-DR were co-expressed and co-up-

regulated by leucine (Figure S5O). In contrast, CXCL10 inhibition

showed a negligible effect on T cell activation (Figure S5N). In

summary, HLA-DR+ neutrophils are associated with an active

TME and can broadly trigger T cell activation, (neo)antigen reac-

tivity, and cytotoxicity, raising the possibility that these cells

could be delivered to fuel T cell responses.

Exploring neutrophil-based immunotherapy to fire
up TME
Another critical question is whether HLA-DR+ neutrophils have

the potential to enhance immunotherapy in vivo. To this end,

we first evaluated the conservation of neutrophil subsets within

mouse TME by collecting mouse scRNA-seq data from 7 murine

cancer types (Table S5). We observed similar subsets such as

Cd74+, Spp1+Vegfa+, and Isg15+ neutrophils in mice (Figure 6A)

as recently reported (Figure S6A).7,11,14 We further observed
phils fed with neoantigens of KRASG12V (MTEYKLVVVGAVGVGKSALTIQLI) or

imulated by HLA-DR+ neutrophils or DCs fed with neoantigens of KRASG12V

added (4:1 to T cells), and the coculture was performed for 7 days. n = 4.

D4 T cells (CXCL13+CD39+CD4+) using mIHC in multi-cancer-TMA cohort

r of CD39+CXCL13+CD4+T cells among HLA-DR+ neutrophil high/low samples.
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Figure 6. Correlation between antigen-presenting neutrophils and associated in vivo immunophenotypes

(A) UMAP of integrated mouse tumor infiltrated neutrophils according to their marker genes and cancer types, in comparison with human neutrophil subsets.

(B) Antigen-presenting gene expression and signature of mouse neutrophils.

(C) Representative mIHC images of Cd74+ neutrophils (LLC, MC38, and Hepa 1–6). Scale bars, 50 mm.

(D) Cd74+ neutrophil proportion between leucine treated and control neutrophils from the blood of LAT1KO, Bcat2KO, DbtKO, and wild-type mice. n = 4.

(E) Comparison of tumor volume between MHC-IIflox/flox; Ly6GCre-tdTomato mice and wild-type mice (MHC-IIflox/flox Ly6GCre-tdTomato: LLC, n = 10; Hepa 1–6, n = 8,

MC38: n = 10; wild-type: LLC, n = 9; Hepa 1–6, n = 10, MC38: n = 10).

(F) Intratumor Cd8a+T and Cd4+T cell proportion between MHC-IIflox/flox; Ly6GCre-tdTomato mice and wild-type mice in LLC, MC38, and Hepa 1–6 subcutaneous

models. Samples were collected on day 16 (MC38 and Hepa 1–6) and day 18 (LLC).

(G) Leucine diet induced higher Cd74+ proportion of intratumor neutrophils in LLC, MC38, and Hepa 1–6 subcutaneous models (leucine: LLC, n = 7; Hepa 1–6,

n = 7, MC38: n = 7; wild-type: LLC, n = 8; Hepa 1–6, n = 8, MC38: n = 8) by using flow cytometry. Samples were collected on day 12.

(H) Intratumor Cd8a+T and Cd4+T cell proportion between leucine diet and control group in LLC, MC38, and Hepa 1–6 subcutaneous models. Samples were

collected on day 12.

(I) Representative mIHC images of Cd4 and Cd8a positive cells between leucine diet and control group in LLC, MC38, and Hepa 1–6 groups. Scale bars, 50 mm.

Samples were collected on day 12.

Data are presented as mean ± standard deviation (D–H). ns, not significant, *p < 0.05, **p < 0.01, ***p < 0.001; Student’s t test (D–H).

See also Figure S6 and Table S1.
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Figure 7. Examination of the therapeutic value of antigen-presenting neutrophils

(A) Tumor volume in leucine diet plus aPD-1 treatment, leucine diet plus isotype treatment, aPD-1 treatment alone, and control groups. n = 10.

(B) Tumor volume in Cd74+ neutrophil adoptive delivering, Cd74-KO neutrophil adoptive delivering, and control groups. The control group is the same as the

control group in Figure 7A. n = 10.

(C) Tumor volume in Cd74+ neutrophil adoptive delivering plus aPD-1 treatment, Cd74-KO neutrophil adoptive delivering plus aPD-1 treatment, and aPD-1

treatment alone groups. The aPD-1 alone group is the same as that in Figure 7A. The adoptive transfer Cd74+NEU group is the same as that in Figure 7B. Data in

Figures 7A–7C were conducted in the same batch. n = 10.

(D and E) HLA-DR+CD74+ neutrophil signature association with immunotherapy-treated patient survival (D) and responsive pattern (E).54–61

(F and G) Proportion of 4-1BB+, CD39+, GZMB+, IFNg+, and TNFa+ subsets among CD4+ cells (upper panel) and CD8+ cells (lower panel) in PDTF models

stimulated by autologous HLA-DR+ neutrophils and HLA-DR� neutrophils from patient blood at different cell number (F) and HLA-DR+ neutrophils from patient

blood, PD-1 antibody, or their combination (G). n = 5.

(legend continued on next page)
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H2-Aa (HLA-DQA homolog), H2-Ab1 (HLA-DQB1 homolog),

Cd74 (CD74 homolog) expression, and antigen-presenting

signature in Cd74+ subsets (Figure 6B) and confirmed this subset

using mIHC (Figure 6C). These results not only highlighted the

conserved role of antigen-presenting neutrophils but also hinted

at the opportunities for investigating these cell subsets in vivo.

Given the role of leucine demonstrated above, we stimulated

mouse circulating neutrophils with leucine in vitro and observed

the upregulation of Cd74, Cd80, and Cd86 (Figures 6D and S6B).

However, circulating neutrophils from knockout mice lacking the

leucine transporter or catabolism enzymes (Lat1KO, Bcat2KO,

and DbtKO) did not respond to leucine treatment (Figure 6D),

again supporting the role of leucine in MHC-II processes.

We subsequently investigated the in vivo association between

antigen-presenting neutrophils and tumor phenotypes. Initially,

we generated the MHC-IIflox/flox; Ly6GCre-tdTomato mice with spe-

cific deletion of antigen-presenting neutrophils (Figures 6E and

S6C), subcutaneously injecting murine cancer cells (LLC,

MC38, and Hepa 1–6), and observed increased tumor growth.

Interestingly, intratumor Cd4 andCd8 T cells both showed signif-

icantly decreased infiltration in MHC-IIflox/flox; Ly6GCre-tdTomato

group (Figure 6F). We next attempted to increase the antigen-

presenting neutrophils in vivo by giving mice the leucine-rich

diet (1.5% leucine in water) and observed increased Cd74+

neutrophils (Figure 6G), but this short-term diet did not

impact cancer volume or body weight (Figures S6D and S6E).

We also tested other amino acids (arginine, cysteine, glutamine,

and tryptophan) but did not find consistently increased Cd74+

neutrophils (Figure S6F).

We further analyzed the TME profile of the leucine diet using

scRNA-seq (Figure S6G), which confirmed the expanded

Cd74+ proportion upon leucine treatment (Figure S6H). In

addition to antigen-presenting, leucine-stimulated neutrophils

also exhibited upregulated chemokines and Toll-like receptor

pathways (Figure S6I). Within the cancer cells themselves

(Figure S6J), the leucine metabolism signature was also upregu-

lated, along with the robust activity of the epithelial-mesen-

chymal-transition and TNFa. Given that CD74+ neutrophils can

activate T cells, we examined T cell infiltration and observed their

increased infiltration (Figures 6H and 6I). Together, these data

indicated that a short-term leucine diet was beneficial for anti-

TME and induced mild changes in cancer cell phenotypes,

raising its potential therapeutic usage.

Then, we explored the therapeutic effect of Cd74+ neutrophils

in murine cancers. Notably, leucine diet plus anti-PD-1 therapy

significantly reduced tumor volumes and enabled the achieve-

ment of stable disease (Figure 7A). Conversely, neutrophil

deletion diminished the efficacy of this combination therapy (Fig-

ure S7A). We also investigated the delivery of antigen-presenting

neutrophils into the TME as another therapeutic option. We iso-

lated mouse circulating neutrophils, stimulated them using

leucine, and confirmed their Cd74 upregulation. Delivering those

Cd74+ neutrophils into the tumors significantly reduced tumor

size but still did not generate stable disease outcomes (Fig-
Data are presented as mean ± standard error (A–C) andmean ± standard deviation

Student’s t test (A, B, C, F, and G), and log-rank test (D).

See also Figure S7.

1434 Cell 187, 1422–1439, March 14, 2024
ure 7B), even when the number of neutrophils was increased

to 1 3 107 (Figure S7B). When transferring Cd74-deficient neu-

trophils, we found significantly diminished anti-tumor effects

(Figure 7B). We also assessed the lifespan of the antigen-pre-

senting neutrophils upon delivering Cd45.1 neutrophils into

Cd45.2 mice and estimated their half-life to be potentially longer

(Figure S7C). Upon combining anti-PD-1 antibody and Cd74+

neutrophil delivery (Figure 7C), we observed robust anti-tumor

efficacy in all tumor models. Notably, in the MC38 and Hepa

1–6models, a significant proportion of tumors showed complete

responses (MC38, 4 of 10; Hepa 1–6, 6 of 10). In contrast, Cd74-

knockout neutrophils showed weak efficacy in combination with

anti-PD-1.

We finally examined antigen-presenting neutrophils in clinical

immunotherapydata. In8cohorts receiving immunotherapyspan-

ning SKCM, STAD, HCC, BLCA, and NSCLC patients,54–61 we

observed significant positive correlations of the HLA-DR+ neutro-

phil signature with better survival or responses (Figures 7D and

7E). Next, we tested the adoptive delivery ex vivo in anti-PD-1

immunotherapy-resistant HCC samples following the patient-

derived tumor fragment (PDTF) strategy.62 After 3 days of

coculture, both CD4 and CD8 T cells displayed upregulation of

cytotoxicmolecules (IFNgandTNFa) aswell as reactivemolecules

(4-1BB and CD39) (Figure 7F). Combing antigen-presenting

neutrophils and PD-1 antibodies also generated greater T cell

reactiveness and cytotoxicity (Figure 7G). Altogether, these in vivo

and human-sample-derived data highlighted the synergy of anti-

gen-presenting neutrophils in immunotherapy and suggested

therapeutic opportunities such as adoptive delivery.

DISCUSSION

High-dimensional single-cell profiling has revolutionized cancer

immunology with its scale and ability to decode complex micro-

environment63 and is leading to organ-wide profiling of certain

cell types such as T cells or macrophages.64,65 For neutrophils,

the opportunity is now here to orchestrate a unified data-driven

framework for defining neutrophil ontology. Here, we integrated

the neutrophil transcriptomes of 225 samples from 143 patients

across 17 cancer types and observed high transcriptional het-

erogeneity composed of 10 cell states. Notably, the HLA-DR

program could be stimulated by leucine treatment, which

induced higher mitochondrial respiration, acetyl-coenzyme A

output, and epigenetic activation of antigen-presenting genes.

As such, a leucine diet or adoptive delivery strategy could boost

cancer immunotherapeutic efficacy andmay serve as a potential

neutrophil-based therapeutic strategy.

Profiling single human neutrophils in an unbiased manner re-

mains a major challenge. Both mouse and human neutrophils

are short-lived3,66 and hence have been largely neglected in pre-

vious cancer single-cell profiling studies. Our strategy of neutro-

phil sorting plus single-cell sequencing has made it possible to

explore the spectra of neutrophil states, the heterogeneity of

cell subsets, and their temporal changes throughout cancer
(F and G). ns, not significant, *p < 0.05, **p < 0.01, ***p < 0.001; Wilcox test (E),
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stages. Our cross-species integration of neutrophil data could

help establish a hierarchy of neutrophils that is conserved in hu-

mans and mice, providing a potential foundation for the applica-

tion of murine models in exploring neutrophil-based therapies.

The cancer-immune cycle is initiated by antigen presentation

processes67; however, impaired antigen-presentingmachineries

within the TME, such as DC dysfunction and HLA downregula-

tion, can drive immune evasion.68 Our high-resolution mapping

approach identified HLA-DR+CD74+ neutrophils as alternative

antigen-presenting cells across various cancer types. A similar

subset of neutrophils was discovered in early-stage lung cancer

in 2016,69 and an independent group recently reported that an

anti-FcgRIIIB-antigen conjugate may convert neutrophils into

antigen-presenting cells.70 In line with this functional plasticity,

our work provides further evidence of metabolic regulation of an-

tigen presentation, demonstrating the role of amino acids in pro-

moting neutrophil antigen presentation, whereas fatty acid or

glucose nutrient stress was essential in regulating macrophage

antigen-presenting function.71,72 Compared with other profes-

sional antigen-presenting cells like dendritic cells, B cells, and

certain macrophage subsets, neutrophils expressing HLA-DR

may have some advantages in certain contexts. For example,

neutrophils are often one of the first responders to sites of inflam-

mation.1 Uniquely, neutrophils possess active phagocytic capa-

bilities and chemotaxis features.1 This attribute potentially em-

powers them to efficiently migrate and degrade antigens, thus

bolstering their role as antigen-presenting cells. Another crucial

feature of neutrophils is their short half-life, which potentially

minimizes the chance of their being reprogrammed into immuno-

suppressive cells by the TME. This is a risk that other longer-lived

immune cells might face. These distinctive characteristics un-

derscore the potential value of neutrophils in anti-tumor immune

response. Further studiesmay explore direct comparisons of an-

tigen presentation capabilities between HLA-DR+ neutrophils

and other professional APCs.

Importantly, our results may offer opportunities for superior

immunotherapy. First, different from neutrophil depletion thera-

pies, our neutrophil delivery strategy requires only the sorting

of autologous circulating neutrophils and short-term ex vivo

stimulation, making it a safer alternative that does not leave pa-

tients susceptible to infection. Second, HLA-DR+ neutrophils

can be loaded with a broad spectrum of (neo)antigens without

the need for complex genetic engineering, which is a potential

advantage over CAR-T cells with limited target antigens, compli-

cated purification processes, and costly T cell engineering. How-

ever, the adverse events of such therapy are still worth studying.

Third, given the short half-life of neutrophils, the side effects of

this therapy might be transient and manageable. This character-

istic might minimize the duration of any potential side effects,

allowing for timely intervention and treatment alteration.

Comprehensive preclinical and clinical studies will be needed

to fully understand the safety profile of this promising therapy.

In summary, our dataset adds to the growing evidence that the

cellular neighborhood within tumors is critical for shaping immune

responses. Neutrophil transcriptome profiling allows for simulta-

neously looking at what cell states are, via the gene program

they express, and how they reside across diverse cancer types.

Our data will help unravel the cellular circuit of neutrophil subsets
aswell aspotentiallybridge thegapseparatingmetabolism,epige-

netic modification, and innate immune cell phenotypes. Our study

may provide opportunities for modulating (neo)antigen-specific

immune responses by developing neutrophil therapy that could

potentially complement existing cancer immunotherapies.

Limitations of the study
The exploration of state-switching in tumor-associated neutro-

phils (e.g., generation of HLA-DR+ neutrophils) continues to be

valuable in a variety of contexts, including tumors with diverse

genetic backgrounds, immunotherapy-treatment refractory tu-

mors, and metastatic tumors. Our studies covered a relatively

limited sample size (i.e., multi-cancer TMA cohort containing 8

cancer types), and further validation of neutrophil states across

larger cohorts is needed to support the generalizability of these

findings. Although our study demonstrated that leucine can

enhance neutrophil-dependent antigen presentation and anti-tu-

mor immunity, the potential adverse effects of a leucine-rich diet

remain poorly defined. It also remains elusive why leucine inten-

sity varies among different tumors and whether the antigen-pre-

senting function of neutrophils can be lost in leucine-poor tu-

mors. In addition, the potential metabolic variation among

neutrophil subsets remains unclear. For example, although

HLA-DR+ neutrophils showed increases in leucine metabolism,

the TXNIP+ subset displayed unique enrichment in histidine,

arginine, and proline metabolism. Testing whether neutrophils

can preferentially take up or utilize these amino acids could pro-

vide insights into their functional differences.

We observed increased T cell proliferation with HLA-DR+ neu-

trophils; further work is needed to detail how they directly acti-

vate T cells. Testing antigen presentation to T cells in vitro and

analyzing CD4+/CD8+ T cell responses in vivo could elucidate

this. Tracking adoptively transferred HLA-DR+ neutrophils would

also shed light on their migration patterns and ability to reach

draining lymph nodes. Although our data demonstrate HLA-

DR+ neutrophils can activate T cells and express high CCL5,

which can recruit T cells, the relationship between localized

neutrophil-T cell interactions versus broader effects on T cell

infiltration warrants further exploration. It is also interesting to

explore the junctions and synapses between T cells and anti-

gen-presenting neutrophils to provide further insight into their

intercellular communication beyond static snapshot analyses.

Tracing the half-life of neutrophils (in the tumor, blood, and lymph

nodes) will be informative for their clinical applicability. Future

research should focus on developing more effective strategies

for reprogramming neutrophils into anti-tumor states such as an-

tigen-presenting states.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Biotin anti-human CD66b antibody, Clone G10F5 BioLegend Cat#305120, RRID: AB_2566608

PE anti-human CD66b antibody, Clone G10F5 BioLegend Cat#305105, RRID: AB_10550093

HLA-DR anti-human antibody, Clone LN3 Thermo Fisher Cat#14-9956, RRID: AB_468638

CD15 anti-human antibody Abnova Cat#MAB-0015

Rabbit Cd74 antibody, reacts with: mouse, Clone

EPR25399-94

Abcam Cat#ab289885

Rabbit Ly6G antibody, reacts with: mouse, Clone

EPR22909-135

Abcam Cat#ab238132

Biotin anti-human CD3 antibody, Clone UCHT1 Biolegend Cat#300404, RRID: AB_314058

PerCP/Cyanine5.5 anti-human CD66b antibody,

Clone G10F5

Biolegend Cat#305108, RRID: AB_2077855

PE anti-human CD66b antibody, Clone G10F5 Biolegend Cat#305105, RRID: AB_10550093

FITC anti-human CD66b antibody, Clone G10F5 Biolegend Cat#305104, RRID: AB_314496

Brilliant Violet 421� anti-human HLA-DR

antibody, Clone L243

Biolegend Cat#307636, RRID: AB_2561831

eFluor660 anti-human Osteopontin (SPP1)

antibody, Clone 2F10

Invitrogen Cat#50-9096-41

Alexa Fluor(R) 488 anti-human CD182 (CXCR2)

antibody, Clone 5E8/CXCR2

Biolegend Cat#320712, RRID: AB_492938

PEcy5 anti-human CD62L antibody, Clone

DREG-56

Invitrogen Cat#1946541

PE anti-human CD54 (ICAM1) antibody,

Clone HCD54

Biolegend Cat#322708, RRID: AB_535980

APC anti-human CD3 antibody, Clone UCHT1 Biolegend Cat#300458, RRID: AB_2564151

Brilliant Violet 785� anti-human CD8a antibody,

Clone RPA-T8

Biolegend Cat#301046, RRID: AB_2563264

APC/Fire� 750 anti-human CD4 antibody,

Clone SK3

Biolegend Cat#344638, RRID: AB_2572097

PE/Dazzle� 594 anti-human/mouse Granzyme

B Recombinant antibody, Clone QA16A02

Biolegend Cat#372216, RRID: AB_2728383

Brilliant Violet 711� anti-human IFN-gamma

antibody, Clone 4S.B3

Biolegend Cat#502539, RRID: AB_11218602

BV650 TNF-a antibody, MAb11 BD Cat#563418, RRID: AB_2738194

FITC anti-human 4-1BB (CD137) antibody,

Clone 4B4

eBioscience Cat#11-1379-42

BV605 anti-human CD69 antibody, Clone FN50 BD Cat#562989, RRID: AB_2737935

Histone H3 (D1H2) XP�Rabbit mAb(Alexa

Fluor�647 Conjugate) antibody, Clone D1H2

Cell Signaling Cat#12230S, RRID: AB_2797852

Acetyl-Histone H3 (Lys27) (D5E4) XP� Rabbit

mAb (Alexa Fluor� 647 Conjugate) antibody,

Clone D5E4

Cell Signaling Cat#39030S, RRID: AB_2799145

FITC-conjugated OVA Sangon Cat#D110528

PE anti-mouse Ly-6G antibody, Clone 1A8 Biolegend Cat#127608, RRID: AB_1186099

Alexa Fluor(R) 488 anti-mouse CD74 (CLIP)

antibody, Clone In1/CD74

Biolegend Cat#151006, RRID: AB_2750326

Alexa Fluor(R) 647 anti-mouse CD74 (CLIP)

antibody, Clone In1/CD74

Biolegend Cat#151004, RRID: AB_2632609

(Continued on next page)
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FITC Anti-Mouse Cd45 antibody Tonbo Cat#35-0451-U025

Alexa Fluor� 700 anti-mouse CD3 antibody BD Cat#561388, RRID: AB_10642588

BV711 anti-mouse Cd8a antibody, Clone 53-6.7 BD Cat#563046, RRID: AB_2737972

PEcy5 anti-mouse Cd4 antibody, Clone RM4-5 BD Cat#553050, RRID: AB_394586

APC anti-mouse CD62L (L-Selectin) antibody,

Clone MEL-14

eBioscience Cat#17-0621-83, RRID: AB_469411

PE/Cyanine7 anti-mouse CD19 antibody,

Clone 6D5

Biolegend Cat#115519, RRID: AB_313654

BV395 anti-mouse Cd11b antibody, CloneM1/70 BD Cat#563553, RRID: AB_2738276

PerCP-Cyanine5.5 anti-mouse Ly6C antibody,

Clone HK1.4

eBioscience Cat#45-5932-82, RRID: AB_2723343

Brilliant Violet 785� anti-mouse F4/80 antibody,

Clone BM8

Biolegend Cat#123141, RRID: AB_2563667

Brilliant Violet 421� anti-mouse CD279 (PD-1)

antibody, Clone 29F.1A12

Biolegend Cat#135221, RRID: AB_2562568

PE-Cyanine5.5 anti-mouse CD11c antibody,

Clone N418

eBioscience Cat#35-0114-82, RRID: AB_469709

Emapalumab (anti-IFNg) antibody Selleck Cat#A2041

TNFa neutralizing antibody Sino Biological Cat#10602-MM0N1

IL-6 neutralizing antibody Sino Biological Cat#10395-R508

IL-17 neutralizing antibody Sino Biological Cat#12047-M237

IL-23 neutralizing antibody Sino Biological Cat#CT035-mh066

Ultra-LEAF� Purified anti-mouse CD279 (PD-1),

Clone 29F.1A12

BioLegend Cat#135248

Ultra-LEAF� Purified Rat IgG2a, k Isotype Ctrl BioLegend Cat#400565

InVivoPlus anti-mouse Ly6G/Ly6C (Gr-1)

antibody, clone RB6-8C5

Bio X Cell Cat#BE0075, RRID: AB_10312146

Chemicals, peptides, and recombinant proteins

Alanine Sangon Cat#A600022-0100

Arginine Sangon Cat#A600205-0100

Asparagine Sangon Cat#A694341-0100

Aspartate Sangon Cat#A600091-0250

Cysteine Sangon Cat#A600132-0100

Glutamine Sangon Cat#A100374-0050

Glutamate Sangon Cat#A600221-0500

Glycine Sangon Cat#A610235-0500

Histidine Sangon Cat#A604351-0050

Isoleucine Sangon Cat#A100803-0050

Leucine Sangon Cat#A600922-0100

Lysine Sangon Cat#A602759-0025

Methionine Sangon Cat#A610346-0100

Phenylalanine Sangon Cat#A600991-0025

Proline Sangon Cat#A600923-0100

Serine Sangon Cat#A601479-0100

Threonine Sangon Cat#A610919-0100

Tryptophan Sangon Cat#A601911-0050

Tyrosine Sangon Cat#A601932-0100

Valine Sangon Cat#A600172-0025

L-Leucine-13C6 Sigma Cat#605239

Dichloroacetate Sigma Cat#2156-56-1

(Continued on next page)
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ACSS2-IN-2 MCE Cat#2332820-04-7

TMRE Fluorescent Mitochondrial Probe Sigma Cat#87917-25MG

NAO nonyl bromide Sigma Cat#A7847-100MG

Fluo 3 Sigma Cat#73881-1MG

JC1 AAT Bioquest Cat#22200

Brite� HPF *Optimized for Detecting Reactive

Oxygen Species (ROS)

AAT Bioquest Cat#16051

Trizol Thermo Fisher Scientific Cat#15596018

NEBNext UltraTM RNA Library Prep Kit NEB Cat#E7490

Collagenase IV STEMCELL technologies Cat#07909_C

RPMI1640 Gibco Cat#11875500BT

Peptide VVRHCPHHERCSDSD China Peptides Inc. N/A

Peptide QHMTEVVRHCPHHER China Peptides Inc. N/A

Peptide RNTFRHSVVVPCE China Peptides Inc. N/A

Peptide NTFRHSVVVPCEPPE China Peptides Inc. N/A

Peptide HYNYMCNSSCMGSMN China Peptides Inc. N/A

Peptide MTEYKLVVVGAVGVGKSALTIQLI China Peptides Inc. N/A

Peptide LVVVGADGV China Peptides Inc. N/A

Peptide SQEQPRCHY China Peptides Inc. N/A

Peptide RLFERDGLKV China Peptides Inc. N/A

Peptide LVVVGADGV China Peptides Inc. N/A

Peptide gp100 (44-59) China Peptides Inc. N/A

Peptide CMV (6571) China Peptides Inc. N/A

MHC class II antigen presentation Gene

Expression PCR Array

Wcgene biotech Cat#WC-MRNA0283-H

MHC class I antigen presentation Gene

Expression PCR Array

Wcgene biotech Cat#WC-MRNA0282-H

DAPI BioLegend Cat#422801

Critical commercial assays

Chromium� Single Cell 50 Library
Construction Kit

10x Genomics Cat#1000020

Chromium� Next GEM Single Cell 50 Library
and Gel Bead Kit v1.1

10x Genomics Cat#1000165

MojoSort� Whole Blood Human Neutrophil

Isolation Kit

BioLegend Cat#480152

Anti-Biotin MicroBeads Miltenyi Biotec Cat#130-090-485

EasySep� Direct Human PBMC Isolation Kit StemCell Technologies Cata#19654

Chromium Next GEM Single Cell 30 Kit v3.1 10x Genomics Cat#1000268

KC-digital� stranded TCR-seq library prep kit Seqhealth Technology Co., Ltd Cat#DT0813-02

Experimental models: Cell line

Human: HepG2 cells Cell Bank of Type Culture Collection

Chinese Academy of Sciences

(CBTCCCAS)

SCSP-510

Human: A549 cells CBTCCCAS SCSP-503

Human: HCT116 cells CBTCCCAS SCSP-5076

Human: PANC1 cells CBTCCCAS SCSP-535

Human: MCF7 cells CBTCCCAS SCSP-531

Human: dHL-60 cells Genomeditech Co. Ltd. N/A

Mouse: MC38 cells Shanghai Model Organisms Center N/A

Mouse: Hepa 1–6 cells Shanghai Model Organisms Center N/A

(Continued on next page)
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Mouse: LLC cells Shanghai Model Organisms Center N/A

Experimental models: Organisms/strains

Mouse: C57BL/6J wildtype Shanghai Model Organisms Center SM-001

Mouse: C57BL/6J Cd45.1 Shanghai Model Organisms Center NM-KI-210226

Mouse: C57BL/6J Cd74-KO Shanghai Model Organisms Center NM-KO-200715

Mouse: C57BL/6J MHC-IIflox/flox Nanjing GemPharmatech Co. Ltd. T019085

Mouse: C57BL/6J Ly6GCre-tdTomato Shanghai Model Organisms Center NM-KI-200219

Mouse: C57BL/6J Lat1(Slc7a5)-KO Nanjing GemPharmatech Co. Ltd. T031657

Mouse: C57BL/6J Bcat2-KO Nanjing GemPharmatech Co. Ltd. T049844

Mouse: C57BL/6J Dbt-KO Nanjing GemPharmatech Co. Ltd. T031427

Biological samples

Neutrophil in-house single-cell RNA-seq data

(n = 155; 103 samples were newly

generated data)

Zhongshan Hospital, Fudan University

Summarized in Table S1

N/A

Neutrophil single-cell RNA-seq data derived

from public data (n = 70, cancer patients; n = 5,

healthy donor)

Summarized in Table S1 N/A

Spatial transcriptomics data derived from

public data (n = 50)

Summarized in Table S5 N/A

Tissue microarray (8-Cancer-TMA) cohort

with survival information (n = 1,116)

Zhongshan Hospital, Fudan University;

Shanghai Outdo Biotech Co. Ltd.

Summarized in Table S1

N/A

Tissue microarray (Multi-Cancer-TMA) cohort

(n = 68)

Shanghai Outdo Biotech Co. Ltd.

Summarized in Table S1

N/A

Blood from healthy donor (n = 44) Zhongshan Hospital, Fudan University N/A

Hepatocellular carcinoma samples treated

with neoadjuvant immunotherapy (n = 5)

Zhongshan Hospital, Fudan University N/A

Deposited data

scRNA-Seq of neutrophils This paper PRJCA020880;

http://pancancer.cn/neu

scRNA-Seq of neutrophils Qian, J. et al.73 E-MTAB-8107, E-MTAB-6149

and E-MTAB-6653

scRNA-Seq of neutrophils Chan, J. et al.74 Human Tumor Atlas Network (HTAN)

scRNA-Seq of neutrophils Yang, L. et al.75 GSE171145

scRNA-Seq of neutrophils Zilionis et al.23 GSE127465

scRNA-Seq of neutrophils Wang et al.25 OEP003254

scRNA-Seq of neutrophils Hu, S. et al.76 HRA001006

scRNA-Seq of neutrophils Xue et al.7 PRJCA007744

scRNA-Seq of neutrophils Tabula Sapiens Consortium et al.77 GSE201333

Spatial transcriptomics Summarized in Table S5 10X Genomics website;

http://lifeome.net/supp/livercancer-

st/data.htm;

https://zenodo.org/record/4739739;

GSE144239; GSE175540

RNA-seq for inferring the neutrophil consensus

infiltration

The Cancer Genome Atlas N/A

RNA-seq for inferring the neutrophil consensus

infiltration

Clinical Proteomic Tumor Analysis

Consortium

N/A

RNA-seq of neutrophils (leucine treatment

and control)

This paper PRJCA020880

(Continued on next page)
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ATAC-seq of neutrophils (leucine treatment

and control)

This paper PRJCA020880

CUT&Tag of neutrophils (leucine treatment

and control)

This paper PRJCA020880

TCR-seq (antigen-presenting neutrophil

stimulating T-cell response)

This paper PRJCA020880

scRNA-Seq of mouse tumors Summarized in Table S5 N/A

RNA-seq of immunotherapy-treated

samples (SKCM)

Gide et al.54 PRJEB23709

RNA-seq of immunotherapy-treated

samples (SKCM)

Hugo et al.55 GSE78220

RNA-seq of immunotherapy-treated

samples (BLCA)

Mariathasan et al.56 EGAS00001002556

RNA-seq of immunotherapy-treated

samples (NSCLC)

Prat et al.57 GSE93157

RNA-seq of immunotherapy-treated

samples (SKCM)

Nathanson et al.58 N/A

RNA-seq of immunotherapy-treated

samples (SKCM)

Lauss et al.59 GSE100797

RNA-seq of immunotherapy-treated

samples (STAD)

Kim et al.60 PRJEB25780

RNA-seq of immunotherapy-treated

samples (HCC)

Zhu et al.61 EGAS00001005503

Software and algorithms

CellRanger V7 10x Genomics https://10xgenomics.com

Seurat V4.0.4 CRAN https://cran.r-project.org/web/

packages/Seurat/index.html

harmony V0.1.0 CRAN https://cran.r-project.org/web/packages/

harmony/index.html

ggplot2 V3.3.5 CRAN https://cran.r-project.org/web/packages/

ggplot2/index.html

dittoSeq V1.5.2 Bioconductor https://bioconductor.org/packages/dittoSeq/

GSVA V1.40.1 Bioconductor https://www.bioconductor.

org/packages/GSVA/

Monocle3 V1.0.0 Github https://github.com/cole-trapnell-lab/monocle3

shiny V1.6.0 CRAN https://cran.r-project.org/package=shiny

TooManyCells V2.0.0.0 github https://github.com/GregorySchwartz/

too-many-cells

SingleR V1.7.1 Bioconductor https://bioconductor.org/packages/SingleR

ggpubr V0.4.0 CRAN https://cran.r-project.org/package=ggpubr

ggsignif V0.6.3 CRAN https://cran.r-project.org/web/packages/

ggsignif/index.html

pheatmap V1.0.12 CRAN https://cran.r-project.org/web/packages/

pheatmap/index.html

ComplexHeatmap V2.15.1 Bioconductor https://bioconductor.org/packages/release/

bioc/html/ComplexHeatmap.html

cowplot V1.1.1 CRAN https://cran.r-project.org/web/packages/

cowplot/index.html

sctour V0.1.3 Pypi https://pypi.org/project/sctour/

xCell V1.1.0 Github https://github.com/dviraran/xCell

dorothea V1.10.0 Bioconductor https://bioconductor.org/packages/release/

data/experiment/html/dorothea.html

(Continued on next page)
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UCell V1.3.1 Bioconductor https://bioconductor.org/packages/release/

bioc/html/UCell.html

ScMetabolism Github https://github.com/wu-yc/scMetabolism

doubletFinder V2.0.3 Github https://github.com/chris-mcginnis-ucsf/

DoubletFinder

Other

Code This paper https://github.com/wu-yc/neutrophil (https://doi.

org/10.5281/zenodo.10531210)

ScProgram This paper https://github.com/wu-yc/scProgram (https://

doi.org/10.5281/zenodo.10531218)

ll
Article
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Qiang Gao

(gaoqiang@fudan.edu.cn).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Processed gene expression data can be queried and downloaded at http://www.pancancer.cn/neu and raw sequencing data

are available at the China National Center for Bioinformation (accession: PRJCA020880) with the permission at Human Genetic

Resources Service System of Ministry of Science and Technology. To request access to raw sequencing data, please apply at

Human Genetic Resources Service System of Ministry of Science and Technology (https://apply.hgrg.net/) according to the

law of Regulations on management of human genetic resources of China. This paper analyzed existing, publicly available

data, where the accession numbers are listed in the key resources table.

d All original code has been deposited at GitHub and Zenodo and is available at https://github.com/wu-yc/neutrophil (https://doi.

org/10.5281/zenodo.10531210) and https://github.com/wu-yc/scProgram (https://doi.org/10.5281/zenodo.10531218).

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Patient inclusion and sample collection
We collected fresh samples from Zhongshan Hospital Fudan University with written consent and approval from the Institutional Re-

viewBoard-approved protocols (B2021-381, B2021-084, B2020-348R, B2023-350). After quality control, a total of 103 samples from

64 patients were included in the analyses. Themedian age of the patients was 59.6 years, and the cohort consisted of 26 females and

38 males, and the detailed information was included in Table S1. Patient inclusion criteria were as follows: Patients with treatment-

naı̈ve primary tumors who underwent surgery; patients without major underlying diseases that may seriously affect neutrophils (such

as autoimmune diseases and acute infection). The 8-Cancer-TMA (n = 1,116; diameter: 1.5 mm; sample information see Table S1)

and Multi-Cancer-TMA (n = 68; diameter: 1.5 mm; tumor and peritumor samples) were from the patients from Zhongshan Hospital

Fudan University and Shanghai Outdo Biotech (Table S1) and approval from Shanghai Outdo Biotech Ethics Committee (SHYJS-CP-

2210040, SHYJS-CP-1910002, SHYJS-CP-1804011, SHYJS-CP-1510001, SHYJS-CP-1701016, SHYJS-CP-1404018). As for

PDTF analysis, samples from 5 HCC patients with pathologic nonresponse (residual viable tumor rates of 95%, 95%, 90%, 90%,

and 90% respectively; treatment: anti-PD-1 plus anti-VEGF agent) were included.

Mouse models
5-week-old male C57BL/6 mice, CD74 KO, CD45.1 mice, and Ly6GCre-tdTomato were obtained from the Shanghai Model Organisms

Center, Inc. MHC-IIflox/flox mice, LAT1KO, Bcat2KO, DbtKO mice were obtained from Nanjing GemPharmatech Co. Ltd. We housed

them under pathogen-free conditions with a maximum of five mice per cage. We strictly adhered to animal care principles and ethics

and received approval from the Institutional Animal Care and Use Committee of the Shanghai Model Organisms Center (approval

number 2019-0011).
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METHOD DETAILS

Standardized cell sorting protocol
Tumor and matched normal samples were dissected into small pieces with a diameter < 1mm, and dissociated using Collagenase IV

(STEMCELL technologies; 07909_C) plus 0.4 mg/mL hyaluronidase in RPMI 1640 (Gibco; 11875093) with a GentleMACSDissociator

for 60 minutes. The resulting cells were filtered through a 400 mm filter and washed with DPBS (500g and 10 minutes). To isolate

CD66b+ neutrophils, we employed a two-step sorting strategy. First, cells were stained with CD66b Biotin antibody (Biolegend,

305120), and then sorted with MS columns (Miltenyi Biotec, 130-042-201). Next, cells were stained with CD66b PE antibody (Bio-

legend, 305105) and sorted again by flow cytometry (BD FACS Aria II). Sorted cells were immediately sent for single-cell RNA

sequencing. For samples with a sufficient number of cells, we also sorted CD45+ cells and sequenced them. As for the neutrophils

derived from blood, we incubated the peripheral blood with red blood cell lysis buffer (Sangon, B541001) for 10 minutes and washed

it with DPBS (500g and 10minutes). The resulting cell suspension was then stained with CD66b PE antibody (Biolegend, 305105) and

sorted using flow cytometry (BD FACS Aria II).

Single-cell sequencing
The sorted cells were sequenced using the 10x Chromium single-cell platform with 50 Reagent Kits following the manufacturer’s

protocol. Single-cell libraries were then sequenced on the NovaSeq platform from Illumina. To trace the sample source, we used

TotalSeq C from BioLegend (399905), which allowed us to distinguish between tumor, adjacent normal, and blood cells.

CellRanger V7 was used for processing the barcodes, aligning the data, and generating initial clusters of the raw scRNA-seq

profiles.

ScRNA-seq data quality control, processing, annotation, and visualization
Raw fastq files were firstly aligned to human genome (GRCh38, ENSEMBL) by CellRanger V7 following the 10X Genomics neutro-

phil tutorial (https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/tutorials/neutrophils), we re-

tained the intronic regions by using the parameter of ‘‘–include-introns’’ and set the ‘‘–force-cells=20000’’ in CellRanger. We

then used Seurat (V4.0.4)78 to process the UMI count matrix. We performed doublet removal by using doubletFinder (V2.0.3).

The mitochondrial gene percentage was assessed by PercentageFeatureSet(object, pattern = "̂MT-") function and cells with mito-

chondrial gene percentage over 10% were removed. Excluding genes in a blacklist as described before,65 the top 5000 genes

were identified as highly variable genes (HVG) using FindVariableFeatures function of Seurat.78 We integrated all cells according

to sample ID by using harmony (V0.1.0).79 We performed clustering analysis and only reserved the neutrophils defined by markers

CSF3R, FPR1, FCGR3B, NAMPT, and MNDA following the 10X Genomics neutrophil tutorial. We further used SingleR (V1.7.1) to

confirm the input cells are real neutrophils. In the second round of doublet removal, we observed clusters with high expression of

CD3D (T cell), CD79A (B cell), and CD68 (macrophage). We next computed the marker genes using FindAllMarker function of

Seurat.78

Single-cell transcriptional program feature gene analysis and signature quantification
We followed a well-established computational strategy designed for decoding single-cell heterogeneity.80 In detail, we first normal-

ized the data matrix using scTransform81 and one-by-one performed NMF analysis (parameter: k = 100). We clustered the Jaccard

index of H matrix and visualized it using pheatmap (V1.0.12). We performed the differential gene analysis to find the feature genes of

each program. Further gene set enrichment analysis was performed using the highly expressed genes. As for the signature quanti-

fication, we used UCell82 to quantify the signature/pathway activity of neutrophils. KEGG,83 hallmark,84 Gene Ontology (GO),85 and

neutrophil immunophenotype signatures29 were included for analysis. As for the circadian analysis of neutrophil signature, the sam-

pling time refers to the surgery time of tumor samples.

Single-cell HLA-type quantification
We employed scHLAcount (V0.2.0, available at https://github.com/10XGenomics/scHLAcount) with default parameters to count the

molecules of class I genes HLA-A, B, and C; and class II genes DPA1, DPB1, DRA1, DRB1, DQA1, and DQB1.

Single-cell metabolism quantification
To explore the featured pathway among HLA-DR+ neutrophils, we first computed the pathway variance (Gini index, metric entropy,

Shannon entropy, and Simpson index). The formula for theGini index is: G = (2A)/(nB), whereG is theGini index; A is the area between

the Lorenz curve and the line of perfect equality of pathway score (the diagonal line from the bottom left to the top right corner of the

graph); B is the total area under the line of perfect equality of pathway score; n is the total number of cells. The formula for the

Simpson index is: D = 1 - S(ni(ni-1))/N(N-1), where: D is the Simpson index; ni is the number of cells in a given pathway. The formula

for Shannon entropy is: H = -SP(x) log2 P(x), where H is the entropy in bits, P(x) is the probability distribution of pathway scores. The

major metabolism subtype quantification was performed using scMetabolism as we developed before37 (parameter: imputation = T,

metabolism.type = "KEGG").
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Cell-cell communication, cell trajectory, and cell clade analysis
To understand how HLA-DR+ neutrophils interact with T cells, we first performed the down-sampling analysis (to 20,000 cells),

impute expression matrix by using ALRA,86 and used CellPhoneDB87 to infer the interactions (parameter: cellphonedb method sta-

tistical_analysis –iterations=100 –threads=48). We next ranked the ligand expressed on neutrophils by the gene expression propor-

tion and frequency. We used scTour to infer the differentiation state of neutrophils.32 To validate the trajectory, we next used

monocle3,33 CytoTRACE,34 and Slingshot35 to separately infer the pseudotime of neutrophil subsets. To compare the hierarchy dif-

ference between neutrophils derived from blood, cancer, and adjacent tissues, we split the expression matrix containing 3000 var-

iable genes and performed clustering analysis using TooManyCells26 (parameter: make-tree PieRing).

Generating the pan-cancer neutrophil infiltration consensus
Wedownload the gene expressionmatrix of pan-cancer solid tumors by using UCSC Xena88 (data type: HTSeq - FPKM-UQ). We first

tested 8 common immune quantification algorithms covering CIBERSORT, ESTIMATE, Quantiseq, MCPCounter, IPS, TIMER, EPIC,

and xCell.16–18,89–93 We found that 3 of them support the quantification of neutrophil level (MCPCounter, Quantiseq, and xCell). We

clustered the pan-cancer samples according to neutrophil level generated by three algorithms and designed the consensus neutro-

phil score based on the consensus rank of these scores. In detail, as for the samples ranked at the upper quantile or low quantile in

three algorithms, we then label the samples as high or low neutrophil consensus samples. While the samples without reaching the

consensus among three algorithms are labeled as heterogeneous samples. We ordered the samples according to the consensus

score and rank them according to cancer types. We also performed the dimensional reduction analysis using t-SNE embedded in

Seurat78 and labeled samples according to their neutrophil consensus status.

Transcription factor activity analysis
For scRNA-seq data, we used dorothea (V1.10.0) to infer the transcription factor activity. As for the ChIP-seq of RFX5 transcription

factor, we fetched published RFX5 ChIP-seq data (accession number: SRX150635, SRX150644, SRX150384, SRX186620,

SRX186634, SRX150462, and SRX150639) and analyzed it using UCSC Genome Browser.94 The neutrophil-like differentiated HL-

60 (dHL-60) cells were obtained by adding 1% DMSO to the HL-60 culture medium for six days.25 We obtained the knockdown

and overexpression plasmids of RFX5 from Genomeditech (Shanghai, China). Empty vector was used as the negative control.

Each condition was performed with 3 replicates.

Multiplex immunohistochemistry analysis
We performed the immunohistochemistry using Osteopontin/SPP1 (Abcam; ab214050; species reactivity: Human), HLA-DR (ther-

mofisher; 14-9956; species reactivity: Human), CD15 (MAB-0015; species reactivity: Human), Cd74 (Abcam; ab289885; species

reactivity: Mouse), Ly6G (Abcam; ab238132; species reactivity: Mouse), CXCL13 (Abcam; ab246518; species reactivity: Human),

CD39 (Abcam; ab300065; species reactivity: Human), CD4 (Biolynx; BX50023; species reactivity: Human), CD8 (Dako; M7103; spe-

cies reactivity: Human), MPO (Abcam; ab300650; species reactivity: Human), CD11b (Abcam; ab133357; species reactivity: Human),

DAPI (BioLegend; 422801) antibodies. We scanned the slides using the PerkinElmer Vectra3 platform and quantified the results by

using PerkinElmer Vectra3 platform as previously described.52,95–97 The 8-Cancer-TMA cohort with matched prognosis metadata

(HCC, COAD, NSCLC, STAD, RCC, OV, BRCA, and BLCA) and Multi-Cancer-TMA cohort (PAAD, RCC, HCC, ICC, STAD,

NSCLC, BRCA, and COAD) were included. The detailed clinicopathological features were described in Table S1.

Cell culture
We performed Ficoll Paque experiment on blood derived from healthy donors using Ficoll Paque Plus agent (GE, 17-1440-03). Neu-

trophils were separated by staining with CD66b Biotin antibody (Biolegend, 305120), adding biotin magnetic beads, and sorting with

MS columns (Miltenyi Biotec, 130-042-201). T cells were separated by staining with CD3 Biotin antibody (Biolegend, 300404), adding

biotin magnetic beads, and sorting withMS columns (Miltenyi Biotec, 130-042-201). Cells (53104) were added to 96-well cell culture

plates in a total volume of 200 mL of culture medium. To maintain neutrophil activity, we added Lipopolysaccharides (LPS, MCE, HY-

D1056) at a concentration of 100 ng/mL. Additionally, we supplemented the mediumwith 20 types of amino acids and performed the

neutrophil culture for 24 hours (Sangon, A600022-0100, A600205-0100, A694341-0100, A600091-0250, A600132-0100, A100374-

0050, A600221-0500, A610235-0500, A604351-0050, A100803-0050, A600922-0100, A602759-0025, A610346-0100, A600991-

0025, A600923-0100, A601479-0100, A610919-0100, A601911-0050, A601932-0100, A600172-0025). The concentration of each

amino acid was set to match the physiological plasma concentration, as reported by healthmatters.io: Alanine (681 mmol/L),

Arginine (137 mmol/L), Asparagine (90 mmol/L), Aspartate (12.6 mmol/L), Cysteine (360 mmol/L), Glutamine (876 mmol/L), Glutamate

(214 mmol/L), Glycine (518 mmol/L), Histidine (114 mmol/L), Isoleucine (104 mmol/L), Leucine (196 mmol/L), Lysine (318 mmol/L),

Methionine (48 mmol/L), Phenylalanine (95 mmol/L), Proline (363 mmol/L), Serine (172 mmol/L), Threonine (216 mmol/L), Tryptophan

(83 mmol/L), Tyrosine (110 mmol/L), Valine (370 mmol/L). Dichloroacetate (mitochondrial acetyl-CoA activator, 0.1 mM; 2156-56-1),

ACSS2-IN-2 (acetyl-CoA inhibitor, 5 nM; 2332820-04-7) were used respectively. Each condition was performed with 3-4 replicates.

As for the HLA-DR+ neutrophil cocultured with T cells, neutrophils were sorted from samples of hepatocellular carcinoma, colorectal

cancer, and non-small cell lung cancer; while T cells were sorted from the PBMC from the same patient.
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Flow cytometry
To perform surface staining, wemixed the appropriate antibodies with the cells at room temperature for 15minutes andwashed them

with DPBS (500g, 10 minutes). For intracellular staining, we used the Fixation Permeabilization Kit (BD, 554714) to fix and permea-

bilize the cells, followed by staining with the appropriate antibodies in the Permeabilization buffer for 30minutes at 4�C, as previously
described.98 The following antibodies were used: CD66b PerCP-Cy5.5 (Biolegend 305108), CD66b PE (Biolegend 305105), CD66b

FITC (Biolegend 305104), HLA-DR BV421 (Biolegend 307636), Osteopontin (SPP1) eFluor660 (Invitrogen 50-9096-41), CXCR2 A488

(Biolegend 320712), CD62L PEcy5 (invitrogen 1946541), CD54 (ICAM1) PE (Biolegend 322708), CD3 APC (Biolegend 300458), CD8a

BV785 (Biolegend 301046), CD4 APC/Fire750 (Biolegend 344638), Granzyme B PE/Dazzle594 (Biolegend 372216), IFN-g BV711

(Biolegend 502539), TNF-a BV650 (BD 563418), 4-1BB (CD137) FITC (eBioscience 11-1379-42), CD69 BV605 (BD 562989), Histone

H3 A647 (Cell Signaling 12230S), Acetyl-Histone H3 Lys27 A647 (Cell Signaling 39030S), OVA FITC (sangon D110528), Ly6G PE (Bio-

legend 127608), Cd74 A488 (Biolegend 151006), Cd74 A647 (Biolegend 151004), Cd45 FITC (TONBO 35-0451-U025), Cd3 A700 (BD

561388), Cd8a BV711 (BD 563046), Cd4 PEcy5 (BD 553050), Cd62L APC (eBioscience 17-0621-83), Cd19 PEcy7 (Biolegend

115519), Cd11b BV395 (BD 563553), Ly6C PerCPCy5.5 (eBioscience 45-5932-82), F4/80 BV785 (Biolegend 123141), Cd279

BV421 (Biolegend 135221), CD11c PEcy5.5 (eBioscience 35-0114-82), CD16 BV711 (Biolegend 302044). Cells were further analyzed

using flow cytometry (BD LSRFortessa) and Flowjo software (BD).

PCR array analysis of MHC class I and II antigen presentation genes
We stimulated neutrophils from healthy donors’ blood with leucine for 24 hours. Gene expression profiling was carried out using the

human MHC class I antigen presentation Gene Expression PCR Array (Wcgene Biotech, Shanghai, China) and human MHC class II

antigen presentation Gene Expression PCR Array (Wcgene Biotech, Shanghai, China) following the manufacturer’s protocol.

Metabolomics LC-MS analysis and leucine tracing
The Thermo Vanquish ultra-high performance liquid phase system (Thermo Fisher Scientific, USA) equipped with an ACQUITY

UPLC� HSS T3 column (2.13150 mm, 1.8 mm) (Waters, Milford, MA, USA) was utilized. The system operated with a flow rate of

0.25 mL/min, a column temperature of 40 �C, and an injection volume of 2 mL. Mass spectral data was collected using the Thermo

Orbitrap Exploris 120 mass spectrometer detector (Thermo Fisher Scientific) with electrospray ionization source (ESI). Both positive

and negative ion modes were used for data collection, with a positive ion spray voltage of 3.50 kV and a negative ion spray voltage of

-2.50 kV. The sheath gas and auxiliary gas were set to 30 arb and 10 arb, respectively. The primary full scan was performed at a res-

olution of 60,000 over the m/z range of 100-1000, and HCD was utilized for secondary fragmentation with a collision voltage of 30%.

The secondary resolution was set to 15,000. The MS data analysis were conducted following a previously established protocol.99

Raw MS data were converted to the mzXML format using ProteoWizard software (http://proteowizard.sourceforge.net). Peaks

were extracted using R package XCMS (V3.20.0). The peak table and MS2 files in mgf format (converted using ProteoWizard)

were uploaded to the MetDNA web server (http://metdna.zhulab.cn/) for metabolite identification. The identifications were assigned

levels 1-3 and unknown, following the MSI (Metabolomics Standard Initiative) guidelines. For the tissue samples, 10 scRNA-seq-

matched samples (HCC, n=4; NSCLC, n=2; OV, n=3; STAD, n=1) passed QC and was prepared for LC-MS. As for the neutrophils,

autologous neutrophils from blood were separated by staining with CD66b Biotin antibody (Biolegend, 305120), added with biotin

magnetic beads, sorted with MS columns (Miltenyi Biotec, 130-042-201), and underwent stimulation with leucine for 24 hours.

For 13C leucine tracing, we treated neutrophils with L-Leucine-13C6 (Sigma 605239) for 24 hours following the published protocol.44

The untreated neutrophils were used as controls. Each condition was performed with 3-4 replicates.

Mitochondrial functional and phenotypic characterization
TMRE (Sigma 87917-25MG), NAO nonyl bromide (Sigma A7847-100MG), Fluo 3 (Sigma 73881-1MG), JC1 (AAT Bioquest 22200),

and ROS (AAT Bioquest 16051) were suspended with neutrophils at room temperature for 30min and washed using DPBS (500g,

10 minutes). Cells were further analyzed using flow cytometry (BD LSRFortessa) and Flowjo software (BD). Leica TCS SP5 laser

confocal microscope was also used to image neutrophil mitochondria. Each condition was performed with 3 replicates.

Seahorse assays
Autologous neutrophils from blood were separated by staining with CD66b Biotin antibody (Biolegend, 305120), added with biotin

magnetic beads, and sorted with MS columns (Miltenyi Biotec, 130-042-201). Post-separation, the neutrophils underwent stimula-

tion with leucine for 24 hours. Cultured plates were used to plate 5 3 105 neutrophils sorted from healthy donors’ blood. The neu-

trophils were then stimulated with leucine for 24 hours, and OCR was measured using an XF24 Seahorse Extracellular Flux Analyzer

following the manufacturer’s instructions. In the seahorse assays, the neutrophils were treated with oligomycin (0.25 mM), FCCP

(0.25 mM), rotenone (0.25 mM), and antimycin A (0.25 mM). Each condition was performed with 3 replicates.

Transmission electron microscopy (TEM)
The neutrophils were fixed in 1% osmium tetroxide in PBS in the dark at room temperature for 2 hours, washed with PBS (pH 7.4)

three times for 15 minutes each, and then dehydrated in a series of alcohol concentrations (30%-50%-70%-80%-90%-95%-

100%-100%) for 15 minutes each. The cells were then embedded in epoxy resin. The resin blocks were sectioned into ultrathin
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sections (60-80 nm) using an ultramicrotome, and collected on 150-mesh copper grids. The grids were stained with 2% uranyl ac-

etate in saturated alcohol solution in the dark for 8 minutes, washed three times with 70% alcohol and three times with ultra-pure

water, and then stained with 2.6% lead citrate for 8 minutes. For each treatment group, we performed the TEM for 5 cells. Images

were obtained using a SUHT7700 electron microscope (hitachi) and subsequently analyzed using ImageJ Fiji (V2.11.0). In detail, we

select the "Straight line" tool and measure the mitochondrial length. The exported length was then analyzed using R.

Confocal imaging
To stain the neutrophils with JC1, we incubated them in a staining solution for 30 minutes at 37�C. After removing the staining so-

lution, we washed the cells with assay buffer to remove any unbound dye. We utilized an Olympus SpinSR10 Ixplore confocal micro-

scope to capture images of the cells. Subsequently, we employed ImageJ Fiji (V2.11.0) software to analyze the images.

Bulk RNA-seq
As for the scRNA-seq-matched samples, sufficient remaining fresh specimens were quickly frozen in liquid nitrogen. As for the

neutrophil samples, autologous neutrophils from blood were separated by staining with CD66b Biotin antibody (Biolegend,

305120), added with biotin magnetic beads, and sorted with MS columns (Miltenyi Biotec, 130-042-201). Post-separation, the

neutrophils underwent stimulation with leucine for 24 hours. Samples were subjected to RNA extraction using Trizol (Thermo Fisher

Scientific, 15596018). Library preparation was performed using NEBNext UltraTM RNA Library Prep Kit (NEB #E7490), followed by

library purification using beads (AMPure XP system). Finally, sequencing was conducted using NovaSeq 6000 with PE150. For align-

ment, the STAR software was employed (https://github.com/alexdobin/STAR). The raw expression levels of each gene (based on

fragment counts) were calculated using htseq-count (https://htseq.readthedocs.io/en/release_0.11.1). The selection criteria for

significantly differentially expressed genes were: |log2FC| > 1 and P-value < 0.05. Neutrophil RNA-seq was performed with 4 repli-

cates. For the immune deconvolution analysis, we use the xCell method.18 First, xCell includes the most types of T cells among the

methodswe tested, providing uswith amore comprehensive view of the T cell landscape in our samples. Secondly, xCell is one of the

most widely used immune cell quantification methods in the field.18

H3K27ac, H3K27me3, and H3K4me3 CUT&Tag
Autologous neutrophils from blood were separated by staining with CD66b Biotin antibody (Biolegend, 305120), added with biotin

magnetic beads, and sorted with MS columns (Miltenyi Biotec, 130-042-201). Post-separation, the neutrophils underwent stimula-

tion with leucine for 24 hours. After this, procedures of cell permeabilization, antibody incubation, tagmentation, DNA extraction, and

sequencing were carried out (Shanghai Jiayin Biotech). For data filtering, the raw reads were processed using Trimmomatic (V0.35,

http://www.usadellab.org/cms/?page=trimmomatic). BWA software https://bio-bwa.sourceforge.net/ was used for alignment. Frag-

ment sizes for read pairs were calculated using the BAM file from aligned paired-end sequencing data. The summary statistics on

fragment lengths were estimated by sampling several regions, depending on the size of the genome and number of processors.

MACS2 (V2.2.7.1, https://pypi.org/project/MACS2/) was used for peak calling in this analysis, Bedtools (V2.30.0, https://bedtools.

readthedocs.io/en/latest/) were mainly used for peak annotation analysis.

ATAC-seq
Autologous neutrophils from blood were separated by staining with CD66b Biotin antibody (Biolegend, 305120), added with biotin

magnetic beads, and sorted with MS columnsMiltenyi Biotec130-042-201Post-separation, the neutrophils underwent stimulation

with leucine for 24 hours. Cell nuclei were subsequently extracted and underwent a transposition reaction via the Tn5 enzyme (Illu-

mina) on 40,000 cell nuclei. Sequencing was performed on an Illumina Novaseq6000using a PE150 sequencing strategy (Shanghai

Jiayin Biotech)The raw reads were filtered using Trimmomatic(V0.35, http://www.usadellab.org/cms/?page=trimmomatic)Data

alignment was conducted using the BWA softwarehttps://bio-bwa.sourceforge.net/Then the aligned reads in BAM file were used

to calculate the fragment sizes for read pairsThe estimation of summary statistics on fragment lengths was done by sampling various

regions, with the selection depending on the genome size and number of processorsMACS2(V2.2.7.1, https://pypi.org/project/

MACS2/) was used for peak calling in this analysis. Lastly, peak annotation analysis primarily employed Bedtools (V2.30.0,

https://bedtools.readthedocs.io/en/latest/).

Spatial transcriptomics
We processed the space ranger output files using Seurat (V4.0.4). The sample information was summarized in Table S5. Afterward,

we utilized Seurat’s SCTransform function for data normalization, RunPCA function for dimension reduction, and FindNeighbors and

FindClusters function for ST spot clustering. To score the cell types, we employed xCell (V1.1.0) and estimated the neutrophil signa-

ture using GSVA (V1.40.1).

Neoantigen, T cell, and neutrophil coculture system
Neutrophils were autonomously harvested from the blood of healthy donor through a process involving CD66b Biotin antibody (Bio-

legend, 305120) staining, the addition of biotin magnetic beads, and sorting using MS columns (Miltenyi Biotec, 130-042-201). Post-

harvesting, these neutrophils were stimulated with leucine for 24 hours. Afterward, synthesized peptides were added at a
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concentration of 10 mg/ml and the antigen-presenting neutrophils were allowed to uptake and process them for 12 hours. Following

this, the neutrophils were cocultured with autologous T cells sorted from PBMC for 24 hours. The following neutralizing antibodies

were used: TNFa (sinobiological, 10602-MM0N1), IL-6 (sinobiological, 10395-R508), IL-17 (sinobiological, 12047-M237), IL-23 (sino-

biological, CT035-mh066), IFNg (Selleck A2041). Each condition was performed with 3 replicates.

Reactive T cell response evaluated by TCR-seq
Autologous neutrophils from healthy donors’ blood were separated by staining with CD66b Biotin antibody (Biolegend, 305120),

added with biotin magnetic beads, and sorted with MS columns (Miltenyi Biotec, 130-042-201). Post-separation, the neutrophils

underwent stimulation with leucine for 24 hours. We cocultured the leucine-induced HLA-DR+ neutrophils with autologous T cells

(negative control: T cell alone, positive control: DCs) and KRASG12V neoantigen (MTEYKLVVVGAVGVGKSALTIQLI) for 7 days

from 4 donors. CD3/CD28 dynabeads were simultaneously added (4:1 to T cells). The T cells were subsequently subjected to

TCR-seq. 2 mg of total RNA from each sample was utilized for the preparation of the TCR sequencing library. This process was con-

ducted using the KC-Digital� Stranded TCR-seq Library Prep Kit (provided by Seqhealth Technology Co., Ltd., Wuhan, China,

DT0813-02), in accordance with the manufacturer’s guidelines. The library products, with lengths ranging from 250-500 base pairs,

were subsequently enriched and quantified. Finally, these samples were sequenced using the NovaSeq platform (Illumina). Se-

quences during PCR amplification were removed. Subsequently, these sequences were aligned to IMGT by using TRUST4

(https://github.com/liulab-dfci/TRUST4). The data was then analyzed and visualized utilizing the immunarch (V1.0.0, https://

immunarch.com/index.html).

Cancer cell, T cell, and neutrophil coculture system
Initially, neutrophils were incubated with leucine for 24 hours. Then, the neutrophils were cocultured with autologous T cells sorted

from PBMC for 24 hours. We then add the cancer cell lines (HepG2, A549, HCT116, PANC1, and MCF7) and cultured them together

for 48 hours. We finally performed the flow cytometry (PI, AnexinV) to assess the apoptosis level of cancer cells. Cancer cells were

gated based on SSC and FSC channels by using Flowjo software (BD). Each condition was performed with 3 replicates.

Mouse model
We obtained 5-week-old male C57BL/6 mice, CD74 KO, CD45.1 mice, and Ly6GCre-tdTomato from the Shanghai Model Organisms

Center, Inc. MHC-IIflox/flox mice, LAT1KO, Bcat2KO, DbtKO mice were obtained from Nanjing GemPharmatech Co. Ltd. We housed

them under pathogen-free conditions with a maximum of five mice per cage. We strictly adhered to animal care principles and

ethics and received approval from the Institutional Animal Care and Use Committee of the Shanghai Model Organisms Center

(approval number 2019-0011). MC38, Hepa 1-6, and LLC cells (5 3 106) were injected at day 0 subcutaneously. For the amino

acid diet group, 1.5% amino acids were added to the drinking water.100 As for the PD-1 treatment group, Ultra-LEAF� Purified

anti-mouse CD279 (PD-1) (BioLegend, 135248) were injected intraperitoneally (100mg per mouse), and Ultra-LEAF� Purified Rat

IgG2a, k Isotype Ctrl (BioLegend, 400565) was used in control groups (100mg per mouse). As for the Ly6G antibody treatment

group, mice were injected with 50 mg of anti-Ly6G Ab (BE0075, BioXCell).101 As for the neutrophil adoptive delivering group,

we split neutrophils from the blood of 5-week-old male C57 mice, stimulated the neutrophils with LPS and leucine for 24 h,

and injected the neutrophils inside the tumor (5 3 106). Tumor volume was calculated using the formula length (mm) 3 widtĥ2

(mm) 3 0.5. These leucine-treated and control samples were sent for single-cell RNA-seq. In each group of each cancer type,

tumors were merged for sequencing. As for the lifetime of neutrophils staying in the tumor microenvironment, we first bear the

Cd45.2 C57BL/6 mouse models with MC38, Hepa 1-6, and LLC cells (5 3 106) subcutaneously. We then delivered neutrophils

from Cd45.1 C57BL/6 mice into Cd45.2 C57BL/6 mouse tumors, and assessed the Cd45.1+Ly6G+ cells proportion at day 0 to

5. Each condition was performed with 5 replicates.

Patient-derived tumor fragment
We followed a well-established protocol for the processing and preservation of HCC samples treated with neoadjuvant immuno-

therapy.62 Tumors were cut into 1–2 mm3 pieces and then gradually frozen using a gradient in cryovials containing 1 mL of freezing

media (FBS with 10% DMSO). Fragments from different regions of tumor were mixed to reduce heterogeneity. After pathological

assessment, samples from 5 patients with pathologic nonresponse (residual viable tumor rates of 95%, 95%, 90%, 90%, and

90% respectively; treatment: anti-PD-1 plus anti-VEGF agent) were selected for further experimentation. The tumor fragments

were mixed with ice-cold matrigel (BD Biosciences; Matrix High Concentration, Phenol Red-Free, 4 mg/mL final concentration)

and transferred to a 96-well flat-bottom plate. Autologous neutrophils of each patient from blood were separated by staining with

CD66b Biotin antibody (Biolegend, 305120), added with biotin magnetic beads, sorted with MS columns (Miltenyi Biotec, 130-

042-201), and stimulated with leucine. Autologous antigen-presenting neutrophils were added to the media and cultured for

3 days. Flow cytometry analysis of T cells was then performed. Each condition was performed with 5 replicates.

Web server
We used Apache and Shiny to construct the web server as previously described.37,102,103 We tested different functions covering

common browsers including Chrome, Safari, and IE. Users are not required to register or log in to access features in the web server.
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Data visualization
We utilized the following software packages for visualization: Seurat (V4.0.4), ggplot2 (V3.3.5), dittoSeq (V1.5.2), ggrepel (V0.9.1),

ggpubr (V0.4.0), ggsignif (V0.6.3), pheatmap (V1.0.12), ComplexHeatmap (V2.15.1), and cowplot (V1.1.1) in R, as well as sctour

(V0.1.3) and TooManyCells (V3.0.0) in Python.

QUANTIFICATION AND STATISTICAL ANALYSIS

We defined statistical significance as P < 0.05 and performed all statistical analyses using R (V4.1.0) and RStudio ("Elsbeth Gera-

nium" Release). Group comparisons were conducted using Student’s t-tests, Wilcoxon rank-sum tests, and ANOVA, while paired

t-tests were utilized for paired comparisons. Unless otherwise specified, bar plots were presented as mean± standard deviation.

Each experiment was repeated three or more times using biologically independent samples. For correlation analyses, we used

Spearman rho or Pearson r. Survival analyses were performed using log-rank tests and the proportion of HLA-DR+CD15+ neutrophils

of CD15+ neutrophils and SPP1+CD15+ neutrophils of CD15+ neutrophils were used for analysis. We utilized the ggsurvplot function

in the R package survminer (V0.4.9) to determine the cutoff value of proportion and generate Kaplan-Meier survival curves.
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Figure S1. Pan-cancer single neutrophil generation, sampling strategy, and program decoding, related to Figure 1

(A) Neutrophil infiltration level of pan-cancer samples from TCGA dataset. n = 8,766. See Table S1 for cancer type abbreviation.

(B) Validation of neutrophil infiltration level of pan-cancer samples from CPTAC dataset. n = 1,033. See Table S1 for cancer type abbreviation. The left panel

represents the neutrophil infiltration across pan-cancer samples. The middle panel represents the cancer types. The right panel represents the ranked neutrophil

infiltration consensus score across pan-cancer.

(C) Correlation between neutrophil infiltration levels in two cohorts (TCGA and CPTAC). The x axis and y axis represent the mean neutrophil infiltration level in

TCGA and CPTAC data by using neutrophil infiltration consensus, MCPCounter neutrophil score, Quantiseq neutrophil score, and xCell neutrophil score,

respectively.

(D) Correlation between neutrophil infiltration levels between the number of included tumor samples in our study and TCGA data. The x axis represents themedian

neutrophil infiltration level in TCGA data. The y axis represents the included patients in our study.

(E) Neutrophil gating strategy of flow cytometry sorting.

(F) UMAP plots of neutrophil subsets from different cancer types. The color represents each neutrophil subset. Cancer types with neutrophils lower than 500 were

removed for visualization.

(G) Neutrophil transcriptional programs by using NMF (see STAR Methods). The upper panel represents the metastasis status and cancer types. The color

represents the correlation value of each program. The right text represents the enriched terms for each program.

(H) Comparison between neutrophil subsets in this study with published human neutrophil states.7,22–25
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Figure S2. Transcriptome features of neutrophil subsets, related to Figure 2

(A) Neutrophil subset infiltration level of different sample types. The color represents the Ro/e (ratio of observed cell number to expected cell number). Larger Ro/e

value means increased infiltration. Ro/e values larger than two were normalized to two.

(B) Matched hematoxylin staining regions as shown in Figure 2D in NSCLC, BRCA, and HCC (HLA-DR+ neutrophil enriched cancer types) with STAD, RCC, and

ICC (SPP1+ neutrophil enriched cancer types). Scale bars, 30 mm.

(C) Validation of the prognostic value of SPP1+CD15+ neutrophils in COAD, NSCLC, HCC, STAD, RCC, OV, BRCA, and BLCA quantified by mIHC in 8-cancer-

TMA cohort. The cutoff value of SPP1+CD15+ to CD15+ neutrophil proportion was determined by R package survival and survminer, and p value was determined

by log-rank test.

(D) Expression profile of differentially expressed proliferation genes and interferon-related genes among neutrophil subsets.

(E) Circadian profile of neutrophil-related signatures according to sampling time. The signature was from the GO and KEGG gene set databases (STARMethods).

***p < 0.001; Wilcox test.

(F) The proportion of neutrophil subsets within cancer, pancreatitis, cholecystitis, and COVID-19 samples.
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Figure S3. Terminal differentiated HLA-DR+ neutrophils, its transcription factor RFX5, and metabolic features, related to Figure 3

(A) Pseudotime estimated by scTour, CytoTRACE, monocle3, and Slingshot of single neutrophils according to neutrophil subsets.

(B) Transcription factor activity associated with pseudotime showing RFX5 as a potential transcription factor in HLA-DR+ neutrophils.

(C) UMAP plot of RFX5 activity and its bindingmotif in neutrophils based on our scRNA-seq data. The size and color represent the value of the RFX5 activity score.

(D) RFX5 binding intensity around HLA-DRA and HLA-DRB1 locus. The data source wasmarked on the right panel of the plot. The y axis represents the ChIP-seq

intensity of DNA binding of RFX5.

(E) Flow cytometry intensity of HLA-DR, Zombie NIR, and CD11bhigh cells based on RFX5 status in neutrophil cell line dHL-60. n = 3. ns, not significant, *p < 0.05,

**p < 0.01; Student’s t test.

(F) Pathway activity of neutrophil subsets based on our scRNA-seq data showed metabolic pathway ranked higher among all pathways.

(G) Carbohydrate metabolism pathway, xenobiotics biodegradation and metabolism pathway, nucleotide metabolism pathway, energy metabolism pathway,

glycan biosynthesis and metabolism, lipid metabolism pathway, cofactors and vitamin metabolism pathway, and other amino acid metabolism activity of

neutrophil subsets. The dot size represents the log (fold change) of each neutrophil subset compared with the remaining cells. The y axis represents the log (p

value) of each neutrophil subset compared with the remaining cells. The color represents different neutrophil subsets. The metabolic pathway activity was

determined by scMetabolism37 (parameter: imputation = T, metabolism.type = "KEGG").

See Table S3 for metabolic pathway data.
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Figure S4. Leucine upregulates HLA-DR in neutrophils through the acetyl-CoA/H3K27ac/MHC-II axis, related to Figure 4

(A) MFI of CD80, CD86, and CCR7 between arginine-treated neutrophils and control group. Neutrophils were sorted from healthy donors’ blood. The bar plot is

mean ± standard deviation. n = 3.

(B) Leucine intensity of leucine-treated neutrophils and control group determined by LC-MS. n = 4.

(C) Relative RNA expression of MHC-I genes (HLA-A, HLA-B, HLA-C, HLA-E, HLA-F, and HLA-G) based on PCR array. HLA-D was not detected and was hence

excluded for the analysis. n = 4.

(D) Signature of MHC class I based on RNA-seq of leucine treated and control group. The signature was from GO gene set database (STAR Methods). n = 4.

(E) Live neutrophil rate according to culture time. n = 3.

(F) Correlation between leucine intensity and HLA-DR+ neutrophil signature of matched tumor samples (HCC, n = 4; NSCLC, n = 2; OV, n = 3; STAD, n = 1). The

leucine intensity was evaluated by LC-MS from matched samples and was log scaled. n = 10. Pearson R was calculated to evaluate the correlation.

(G) Differential metabolite analysis of leucine-treated neutrophils and control group. n = 4. See Table S4 for the exact metabolite intensity.

(H) ATP intensity of leucine treatment and control group. n = 4.

(I) Mitochondrial ROS MFI of leucine treatment, lipopolysaccharides (LPS), and control groups. n = 5.

(J) Mitochondrial quality (NAO) MFI of leucine treatment, LPS, and control groups. n = 5.

(K) Mitochondrial Ca+ (Fluo3) MFI of leucine treatment, LPS, and control groups. n = 5.

(L) Mitochondrial membrane potential comparison between leucine-treated neutrophils and control group. n = 5.

(M) Comparison of mitochondria length between leucine-treated neutrophils and control groups. The length was measured by transmission electron microscopy

and calculated with ImageJ analysis.

(N) Comparison of NAD intensity between leucine-treated neutrophils and control group. n = 3.

(O) Left panel: MFI of mitochondrial membrane potential (TMRE) according to mitochondrial respiration complex I inhibition (untreated, 1 h, and 2 h). Right panel:

HLA-DR+ neutrophil proportion according to mitochondrial respiration complex I inhibition in each group (untreated, 1 h, and 2 h). n = 3.

(P) Fold change of mitochondrial membrane potential (TMRE) MFI upon mitochondrial respiration complex inhibition including carbonyl cyanide m-chlor-

ophenylhydrazone (CCCP), oligomycin, and carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP). n = 3.

(Q) HLA-DR MFI between NAD-supplemented neutrophils and control group. n = 3.

(R) Signature of pantothenate and CoA biosynthesis based on RNA-seq data in leucine treated and control group. The signature was from the KEGG database.

n = 4.

(S) Histone H3 MFI of leucine treatment, acetyl-CoA activation, and control groups. n = 5.

(T) H3K27ac modification on transcription factor RFX5 locus and MHC-II super-enhancer locus of leucine and control groups. n = 3. Replicates were merged for

visualization.

(U) Chromatin accessibility on HLA-DQB1 and transcription factor RFX5 locus of leucine and control groups. The chromatin accessibility was determined by

ATAC-seq.

Data in the bar plots are presented as mean ± standard deviation (A, I–L, O–Q, and S) and mean ± standard error (E). ns, not significant, *p < 0.05, ## and

**p < 0.01, ### and ***p < 0.001; Student’s t test (A, C, E, I–M, O, P, Q, and S), paired Student’s t test (B, D, H, N, and R), and Wilcox test (T).
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Figure S5. HLA-DR+ neutrophils link with T cell infiltration and stimulate T cells, related to Figure 5

(A) Correlation between HLA-DR+ neutrophil signature andCD4+ T effector memory (em), CD8+ T central memory (cm), CD8+ Tem, and CD8+ T cell signature. The

signature score was estimated using xCell (STAR Methods) based on the RNA-seq of matched samples. The signature was estimated by xCell algorithm (STAR

Methods).

(B) Spatial co-localization between HLA-DR+ neutrophil signature and other major immune lineages. Data sources and accession were summarized in Table S5.

(C) MHC-I allele quantification of tumor-infiltrating neutrophils based on scRNA-seq data. The analysis pipeline was summarized in STAR Methods. The x axis

represents the mean expression of MHC-I molecules. The y axis represents the number of cells.

(D) Fluorescent (FITC)-labeled OVA positive cells among HLA-DR low, HLA-DR medium, and HLA-DR high neutrophils. Neutrophils were sorted from healthy

donors’ blood. n = 6.

(E) Fluorescent (FITC)-labeled OVA positive cells among HLA-DR low, HLA-DR medium, and HLA-DR high neutrophils. Neutrophils were sorted from healthy

donors’ blood.

(F) Dimension reduction analysis of TCR repertoire of T cells stimulated by HLA-DR+ neutrophils or DCs fed with neoantigens of KRASG12V

(MTEYKLVVVGAVGVGKSALTIQLI). The TCR was performed on the T cells in the coculture system.

(G) Association between HLA-DR+ neutrophils and reactive CD8 T cells estimated by mIHC. The left panel represents the representative mIHC images of HLA-

DR+ neutrophils (HLA-DR+CD15+ cells) and reactive CD8 T cell responses (CXCL13+CD39+CD8+ cells) in multi-cancer-TMA cohort covering 8 cancer types.

Scale bars, 30 mm. The right panel represents the number of CD39+CXCL13+CD8+T cells amongHLA-DR+ neutrophil high/low samples. n = 62. Samples with low-

quality mIHC were excluded.

(H) T cell cytotoxicity (TNFa intensity) when cocultured with leucine-treated neutrophils, untreated neutrophils, and negative control without antigen. Autologous

neutrophils and T cells were sorted from healthy donors’ blood. n = 3.

(I) The apoptosis of cancer cell lines induced by HLA-DR+ neutrophil-activated T cells. Neutrophils and T cells were sorted from healthy donors’ blood.

(J) T cell cytotoxicity (TNFa intensity) when cocultured with HLA-DR+ neutrophils in different coculture methods, including medium, transwell, and direct

coculture. Neutrophils and T cells were sorted from healthy donors’ blood. n = 4.

(K) The proportion of TNFa+CD3+T cells cocultured with HLA-DR+ neutrophils when treated with TNFa, IL-6, IL-17, IL-23, and IFNg neutralizing antibodies,

cocktail neutralizing antibodies, and control. Neutrophils and T cells were sorted from healthy donors’ blood. n = 4.

(L) HLA-DR+ neutrophils and T cell ligand-receptor analysis inferred from scRNA-seq data. The ligand-receptor results were generated by using CellPhoneDB

(STAR Methods).

(M) Ligand-receptor analysis of ICAM gene family inferred from scRNA-seq data.

(N) T cell cytotoxicity (TNFa intensity) in HLA-DR+ neutrophil coculture system when inhibiting the ligand-receptor interaction of CXCL10 or ICAM1. Neutrophils

and T cells were sorted from healthy donors’ blood. n = 4.

(O) Correlation between HLA-DR+ neutrophil proportion and ICAM1+ neutrophil proportion examined by flow cytometry. The correlation analysis was evaluated

by Spearman-Rho and Pearson R analysis.

Data in the bar plots are presented as mean ± standard deviation (D, H, K, and N). ns, not significant, *p < 0.05, **p < 0.01, ***p < 0.001; Student’s t test (D–E, G–I,

K, N), paired Student’s t test (J).
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Figure S6. Leucine diet reprograms tumor microenvironment and associates with altered T cell response in vivo, related to Figure 6

(A) Comparison between neutrophil subsets in this study with published mouse neutrophil states.11,14

(B) Cd80+, Cd86+, and Ccr7+ neutrophil proportion between leucine treated and control neutrophils from blood of LAT1KO, Bcat2KO, DbtKO, and wild-type mice.

The bar plot is mean ± standard deviation. ns, not significant, **p < 0.01, ***p < 0.001; Student’s t test.

(C) MHC-II intensity on intratumor neutrophils from the MHC-IIflox/flox; Ly6GCre-tdTomato mice and wild-type mice.

(D) Tumor volume from leucine diet and control group in LLC, MC38, and Hepa 1–6 bearing mice. ns, not significant; Student’s t test. The samples were collected

on day 12.

(legend continued on next page)
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(E) The weight of mice from the leucine diet and control group in LLC, MC38, and Hepa 1–6 bearing mice. ns, not significant; Student’s t test. The samples were

collected on day 12.

(F) Flow cytometry of Cd74 in tumor-infiltrating neutrophils from mouse models (LLC, MC38, and Hepa 1–6 bearing mice) fed with each amino acid (arginine,

cysteine, glutamine, and tryptophan) diet. The samples were collected on day 12.

(G) UMAP plot and cell proportion based on scRNA-seq data from leucine diet and control group. The samples were collected on day 12.

(H) Proportion of Cd74+ neutrophils among all neutrophils based on scRNA-seq data from leucine diet and control group in LLC, MC38, and Hepa 1–6 bearing

mice. *p < 0.05; Student’s t test. The samples were collected on day 12.

(I) Pathway enrichment analysis of differentially expressed genes of neutrophil between leucine diet and negative control based on scRNA-seq data. The size of

dot represents the log (p value).

(J) Cancer cell signature comparison between leucine diet and control group based on scRNA-seq data in LLC, MC38, and Hepa 1–6 bearing mice. The signature

was from the cancer hallmark gene set database.
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Figure S7. The therapeutic value of antigen-presenting neutrophils, related to Figure 7

(A) Comparison of tumor volume between leucine + PD-1 antibody group and leucine + PD-1 antibody + Ly6G antibody group. n = 5. ***p < 0.001; Student’s t test.

(B) Comparison of tumor volume of adoptive transferring Cd74+ neutrophils at different cell numbers (1 3 106, 5 3 106, and 1 3 107). n = 5. ns, not significant,

*p < 0.05, **p < 0.01, ***p < 0.001; Student’s t test.

(C) Cd45.1+Ly6G+ cell proportion of Ly6G+ cells by delivering leucine-treated and untreated Cd45.1+ neutrophils into Cd45.2 mouse tumors at different time

points (0, 12, 24, 36, and 48 h). n = 5. *p < 0.05, **p < 0.01, ***p < 0.001; Student’s t test.
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