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SUMMARY

Commensal microbes can have a substantial impact
on autoimmune disorders, but the underlying molec-
ular and cellular mechanisms remain largely unex-
plored. We report that autoimmune arthritis was
strongly attenuated in the K/BxN mouse model under
germ-free (GF) conditions, accompanied by reduc-
tions in serum autoantibody titers, splenic autoanti-
body-secreting cells, germinal centers, and the
splenic T helper 17 (Th17) cell population. Neutraliza-
tion of interleukin-17 prevented arthritis develop-
ment in specific-pathogen-free K/BxN mice resulting
from a direct effect of this cytokine on B cells to
inhibit germinal center formation. The systemic defi-
ciencies of the GF animals reflected a loss of Th17
cells from the small intestinal lamina propria. Intro-
duction of a single gut-residing species, segmented
filamentous bacteria, into GF animals reinstated the
lamina propria Th17 cell compartment and produc-
tion of autoantibodies, and arthritis rapidly ensued.
Thus, a single commensal microbe, via its ability to
promote a specific Th cell subset, can drive an auto-
immune disease.

INTRODUCTION

Mammals host trillions of microbes at diverse locations

throughout the body, in particular in the gut (Bäckhed et al.,

2005; Ley et al., 2006, 2008b). The enormity and complexity of

these commensal (or mutualistic) communities have been

difficult to deal with until recently, when striking advances in

‘‘next generation’’ sequencing methods, entailing either 16S

rRNA or ‘‘shotgun’’ cataloguing, rendered this field navigable

terrain.

The gut microbiomes of humans and mice are broadly similar

(Bäckhed et al., 2005; Ley et al., 2006, 2008a, 2008b). In both

cases,�1000 different microbial species from�10 different divi-
sions colonize the gastrointestinal tract, but just two bacterial

divisions—the Bacteroidetes and Firmicutes—and one member

of the Archaea appear to dominate, together accounting for

�98% of the 16S rRNA sequences obtained from this site. The

number and identity of microbial communities vary along the

length of the gut, in a proximal to distal gradient of abundance

(small intestine < cecum < colon) and across the three dimen-

sions of the lumen and mucous layers. The total number of genes

borne by the gastrointestinal microbiome has been estimated to

exceed more than a 100-fold that of the human genome (Ley

et al., 2006). The products of these genes are put to good use

by the host, for example in digestion, production of nutrients,

detoxification, defense against pathogens, and development of

a competent immune system (Bäckhed et al., 2005; Ley et al.,

2006, 2008b).

The gastrointestinal microbiome and the immune system are

closely tied, each influencing and being influenced by the other

(Macpherson and Harris, 2004; Mazmanian and Kasper, 2006;

Rakoff-Nahoum and Medzhitov, 2008; Vassallo and Walker,

2008; Duerkop et al., 2009). In general terms, the incomplete

state of the immune system in germ-free (GF) conditions and in

neonatal individuals argues that its normal maturation is driven

by commensal microbes—for example, GF-housed individuals

and neonates can have a reduced fraction of peripheral CD4+

T lymphocytes, a systemic tilt toward the T helper 2 (Th2) cell

phenotype, defective T and B cell compartments in gut-associ-

ated lymphoid tissue, reduced complements of immunoglobulin

G (IgG) and IgA antibodies (Abs), etc. (Mazmanian et al., 2005,

2008; Rakoff-Nahoum et al., 2004; Ivanov et al., 2008; Atarashi

et al., 2008; Grice et al., 2009; Macpherson and Harris, 2004;

Vassallo and Walker, 2008). In more specific terms, gut-resident

bacteria—sometimes even a single species—can have a strong

influence on the emergence and/or maintenance of particular

CD4+ T cell subsets. Examples include the effects of specific

bacteria on the emergence of Th17 cells in the intestinal lamina

propria (LP) (Ivanov et al., 2008, 2009; Atarashi et al., 2008; Salz-

man et al., 2010; Gaboriau-Routhiau et al., 2009) and the impact

of Bacteroides fragilis on systemic Th1 cells and local interleukin-

10 (IL-10)-producing regulatory T cells (Mazmanian et al., 2005,

2008). In both cases, dendritic cells (DCs) are thought to be the

initial target of mediators produced either by the culprit microbe
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Figure 1. Attenuation of Arthritis in GF K/xBN Mice

(A and B) Ankle thickening values (A) and anti-GPI titers (B) for GF and SPF

K/BxN mice of the indicated ages. Each symbol represents one animal; bars

indicate the group mean.

(C) GF K/BxN mice were shipped to our SPF facility and upon weaning

(day 21), ankle thickening was measured from day 23. Closed circles, average

of ankle thickening ± SEM, serially measured on cohorts; closed triangles,

analogous measurements for SPF-housed K/BxN mice; open circles, values

for individual GF-housed K/BxN mice, not measured serially because of exper-

imental contingencies.

(D) Sera were collected at the end of the experiment depicted in (C). The bar

indicates the mean.

Asterisks indicate statistical significance via the Student’s t test (*p = 0.05,

**p < 0.05, ***p < 0.005).
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or in response to it—adenosine-50-triphosphate (ATP) or serum

amyloid A (SAA) in the former case (Atarashi et al., 2008; Ivanov

et al., 2009) and the polysaccharide PSA in the latter (Mazmanian

et al., 2005).

Given these tight associations, it is not surprising that gut

microbiota have been linked to pathologies of the immune

system, notably allergies and autoimmune disorders (Strachan,

1989; Wills-Karp et al., 2001; Kelly et al., 2007). Ties to inflamma-

tory bowel diseases are easy to understand, but the cellular and

molecular mechanisms by which intestinal commensals influ-

ence autoimmune responses at distal sites remain enigmatic.

The time seems ripe to apply new, and rapidly emerging, knowl-

edge about the composition and properties of the gastrointes-

tinal microbiome and about the activities of recently discovered

effector and regulatory T cell subsets to dissecting these

mechanisms in autoimmune disease models. We chose to study

the K/BxN T cell receptor (TCR) transgenic mouse model of

inflammatory arthritis because of its easily distinguishable initia-

tion and effector stages (Kouskoff et al., 1996; Korganow et al.,

1999; Matsumoto et al., 1999). The initiation phase relies

primarily on the adaptive immune system. T lymphocytes dis-

playing the transgene-encoded TCR recognize a self-peptide

derived from glucose-6-phosphate isomerase (GPI) presented

by the major histocompatibility complex class II molecule, Ag7;

these autoreactive T cells provide exceptionally effective help

to GPI-specific B cells, resulting in massive production of GPI

autoAbs, primarily of the IgG1 isotype. The effector phase, which

can be mimicked by transfer of serum from K/BxN into standard

mice, is executed primarily by innate immune system players.

GPI:anti-GPI immune complexes initiate a self-sustaining inflam-

matory response that mobilizes mast cells, neutrophils, the alter-

native pathway of complement, Fcg receptors, tumor necrosis

factor-a (TNF-a), IL-1, etc. Arthritis ensues rapidly (beginning at

about 4 weeks of age) and with high penetrance (close to 100%).

Here we report that arthritis was attenuated in K/BxN mice

housed under GF conditions. Disease dampening was traced

to a dearth of Th17 cells, which could be reversed by introducing

segmented filamentous bacteria (SFB) into the gut of GF-housed

mice, provoking rapid onset of arthritis. Thus, we provide an

example of an extra-gut autoimmune disease triggered by

a single member of the commensal intestinal microbiota through

its promotion of a particular Th cell subset.

RESULTS

Germ-Free K/BxN Mice Have Reduced GPI AutoAb
Titers and Attenuated Arthritis
To explore the impact of commensal microbes on the develop-

ment of autoimmune arthritis, we established GF colonies of

KRN/B6 and NOD mice and mated the two strains to obtain

K/BxN experimental animals. As judged by both ankle thickening

(Figure 1A) and clinical index (not shown), GF-housed K/BxN mice

developed an attenuated arthritis compared with that of K/BxN

animals contemporaneously housed in a specific-pathogen-free

(SPF) facility—both delayed in onset and reduced in severity.

A key disease landmark in this arthritis model is the production

of high titers of serum GPI autoAbs, which separates the initia-

tion phase, dependent on the adaptive immune system, from

the effector phase, mostly driven by innate immune system
816 Immunity 32, 815–827, June 25, 2010 ª2010 Elsevier Inc.
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players (Korganow et al., 1999). At 8 weeks of age, serum total

IgG (Figure 1B) as well as IgG1 (Figure S1 available online), the

dominant anti-GPI Ab isotype in the K/BxN model (Korganow

et al., 1999), were substantially lower in GF K/BxN mice than in

their SPF counterparts. At later time points, the difference in

anti-GPI titers under the two housing conditions was not so

apparent, in contrast to the continued attenuation of ankle thick-

ness in GF mice. Such discordance between autoAb titers and

the degree of ankle thickening is frequent at late time points in

this model. At this stage of disease, ankle thickness reflects

primarily bone remodeling and fibrosis, and so is a cumulative

index of disease duration and severity rather than an indicator

of concomitant inflammation (Kouskoff et al., 1996).

To confirm that the differences in disease parameters really

reflected the GF environment—and not, for example, genetic

drift—and to evaluate their reversibility, we transferred 21-day-

old GF K/BxN mice back into our SPF facility. After 14 days,

they had already begun to develop arthritis, which soon sur-

passed the disease of straight GF K/BxN animals in both its

speed and severity but was still delayed and diminished vis-à-

vis straight SPF counterparts (Figure 1C). Clinical disease

severity reflected the titers of GPI autoAb attained at 7 weeks

of age under the three housing conditions (Figure 1D). Thus,

commensal microbes are required for the development of high

GPI autoAb titers and severe arthritis in the K/BxN model.

The Impact of Commensal Microbes on the Adaptive
Immune System of K/BxN Mice
Although influences on effector-phase processes certainly

remain possible, the reduced GPI autoAb titers in the absence

of commensal microbes suffices, in and of itself, to explain the

attenuated arthritis in GF K/BxN mice (Matsumoto et al., 1999).

Therefore, we examined the impact of commensals on the adap-

tive immune system in this model, focusing on the spleen

because by far most GPI Ab-secreting cells (ASCs) reside in

this organ (Maccioni et al., 2002; Huang et al., 2010). First, we

surveyed the B lymphocyte compartments, performing a four-

way comparison of splenocytes from 6- to 8-week-old BxN

versus K/BxN mice housed in SPF versus GF conditions. The

percentages and numbers of splenic B cells (CD19+) in GF and

SPF K/BxN mice were similar (Figure S2A), as were, more specif-

ically, their T1 (IgMhiIgDlo), T2 (IgMhiIgDhi), mature (IgMloIgDhi),

follicular (CD21loCD23hi), and marginal zone (CD21hiCD23lo) B

cell compartments (Figures S2B and S2C). SPF K/BxN mice

showed an increase in the percentage of splenic germinal center

(GC) B cells (Fas+PNA-receptor+) vis-à-vis BxN controls, reflect-

ing activation and expansion of the anti-GPI specificities

(Figure 2A, top). This augmentation did not occur under GF

conditions (Figure 2A, bottom). Perhaps not surprisingly, then,

GF K/BxN mice had a reduced complement of CXCR5+PD1+ T

follicular helper (Tfh) cells, which reside primarily in GCs

(Figure 2B). The spleens of GF K/BxN mice also had a smaller

fraction of anti-GPI ASCs, as measured by an ELISPOT assay

(Figure 2C). These deficiencies can explain the reduced titer of

serum GPI autoAbs in GF K/BxN mice.

Given the established T cell dependence of the GPI autoAb

response (Kouskoff et al., 1996; Korganow et al., 1999), we

also compared the T cell compartments of K/BxN mice kept

under the two husbandry conditions. There were only minor
changes in the representation of thymic or splenic CD4+ or

CD8+ T cells in GF animals, the biggest difference being a

20%–50% reduction in the splenic CD4+ T cell compartment

compared with that of SPF mice (Figures S2D and S2E), and

the activation state of peripheral cells was similar under the

two housing conditions (e.g., Figure 2D). Also, there was no

evident change in either the fraction of CD4+Foxp3+ T regulatory

(Treg) cells or in their in vitro suppressive activity (Figures S2F

and S2G). However, splenocytes from GF K/BxN mice re-

sponded less well than those from SPF K/BxN animals when

challenged in vitro with the relevant GPI peptide at all doses

tested (Figure 2E). Thus, given the particular B and T cell defects

observed, the T helper capabilities of GF K/BxN mice appear to

be somehow compromised.

GF K/BxN Mice Have a Dearth of Splenic
IL-17-Producing T Cells
To permit a broad, unbiased comparison of Th cells from mice

under the two conditions, we performed microarray-based

gene-expression profiling on CD4+ T cells purified from spleens

of SPF and GF BxN and K/BxN animals. A FoldChange/Fold-

Change (FC/FC) plot revealed upregulation of a large number

of transcripts in the K/BxN (versus BxN) T cells; the off-diagonal

disposition of the major cloud of dots indicated that induction

was muted in GF (versus SPF) mice (Figure 3A). Another instruc-

tive manner to compare gene expression in SPF and GF mice is

the ‘‘volcano plots’’ depicted in Figure 3B, which display for each

gene the SPF versus GF FC on the x axis and the p value of this

FC on the y axis. Superimposing previously determined Th cell

signatures (Nurieva et al., 2008) onto the plots showed there to

be minimal changes in GF CD4+ T cells in transcripts typical of

Th2 cells, i.e., no bias to either side of the midline. However, as

indicated by their skewed disposition away from the right, the

Th1 and Th17 cell signatures were both diminished in GF CD4+

T cells. We did not further pursue the defect in the Th1 cell subset

in this study because crossing a null mutation of the gene encod-

ing interferon-g (IFN-g), the major Th1 cell cytokine, into the

K/BxN model had no impact on the arthritis parameters exam-

ined, including ankle thickening, clinical score, and histopa-

thology (Figure S3 and data not shown).

The transcript profiling pointed to a defect in GF K/BxN Th17

cells that encompassed several of this subset’s hallmark

proteins: e.g., reductions in RORgt (1/1.8), IL-17A (1/1.3), IL-21

(1/1.3), IL-22 (1/3.2), and CCR6 (1/1.3) The dearth of IL-17A

was confirmed by both PCR quantification of splenic CD4+

T cell transcripts (Figure 3C) and cytofluorimetric evaluation of

IL-17 amounts in this population restimulated ex vivo (Figure 3D).

According to both assays, Il17a gene expression was strongly

induced in SPF K/BxN vis-à-vis BxN mice, but this induction

was minimal under GF conditions.

To assess the disease relevance of a defect in the Th17 cell

compartment of K/BxN mice, we performed neutralization

experiments via an IL-17 monoclonal Ab (mAb). Treatment of

25-day-old SPF-housed K/BxN mice, just at arthritis onset,

with anti-IL-17 completely blocked disease progression, which

was reflected in low serum GPI autoAb titers (Figure 4A). In addi-

tion, when GF mice were transferred to the SPF facility, they did

not succumb to arthritis if anti-IL-17 mAb was administered from

the time of transfer (Figure 4B).
Immunity 32, 815–827, June 25, 2010 ª2010 Elsevier Inc. 817
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Figure 2. Impact of Commensal Flora on the B and T Cell Compartments of K/BxN Mice

(A) Splenocytes from GF or SPF BxN or K/BxN mice were stained with Abs recognizing B220, CD4, or FAS or with PNA-R and were analyzed by flow cytometry,

gating as indicated. Values indicate the percentages of Fas+PNA-R+ cells in total B cells. Data are representative of two independent experiments.

(B) Splenocytes from GF or SPF BxN or K/BxN mice were stained with mAbs recognizing B220, CD4, CXCR5, and PD-1 and were analyzed by flow cytometry,

gating as indicated. Values indicate the percentages of CXCR5+PD-1+ cells in total CD4+ T cells. Data are representative of two independent experiments.

(C) Purified B cells of GF or SPF BxN or K/BxN mice were stimulated with GPI protein (10 mg/ml) for 6 hr. An ELISPOT assay revealed GPI-specific ASCs. Fraction

of GPI-specific ASCs among total B cells; mean + SEM from two independent experiments.

(D) Splenocytes were isolated from SPF or GF K/BxN mice, stained, and analyzed by flow cytometry. The values indicate percentages of CD44+ cells in CD4+

T cells. Data are representative of two independent experiments (SPF BxN, 23.3 ± 0.9 SEM [n = 2]; SPF K/BxN, 61.8 ± 4.8 SEM [n = 3]; GF BxN, 22.1 ± 4.5 SEM

[n = 2]; GF K/BxN, 61.3 ± 3.2 SEM [n = 4]).

(E) Splenocytes were isolated from SPF and GF K/BxN mice and stimulated with GPI282-294 peptide at the indicated concentration.

Data are representative of two independent experiments. Asterisks indicate statistical significance via the Student’s t test, *p < 0.05.
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Because IL-17 has generally been thought of as a proinflam-

matory cytokine, its effect on anti-GPI titers may appear

surprising on first consideration. However, Hsu et al. recently

reported a direct impact of IL-17 on GC formation in the BXD2

mouse strain (Hsu et al., 2008). Indeed, anti-IL-17 blocking

studies demonstrated this cytokine to be required for efficient

GC formation in the K/BxN model (Figure 4C). In addition, trans-

fer experiments showed that IL-17’s promotion of GCs was

a direct effect on B cells. 1 3 107 B cells not expressing or

expressing IL-17R were purified from spleens of IL-17R-deficient

or IL-17R-sufficient B6.H-2g7 (B6g7) littermates; each population

was combined with an equal number of splenocytes from

arthritic K/BxN mice; each mix was transferred into lightly irradi-

ated (450R) BxN.Rag1�/� recipients; and the recipients’ spleno-

cytes were analyzed 2 weeks later by flow cytometry. B cells

lacking IL-17R could repopulate the spleen (Figure 4D, top) but

showed a substantially diminished capacity to partake in GCs

(Figure 4D, bottom). Thus, a paucity of splenic Th17 cells was

a critical factor in the diminished arthritis of K/BxN mice; IL-17

promoted GPI autoAb production, enhancing GC formation via

a direct effect on B cells.
818 Immunity 32, 815–827, June 25, 2010 ª2010 Elsevier Inc.
Linking Arthritis to Gut Commensals
How can commensal microbes impact on the production of

IL-17 by splenic T cells? Microbial colonization of the gut pro-

motes Th17 cell differentiation in the small-intestinal lamina-

propria (SI-LP), the major site of this subset’s differentiation

(Ivanov et al., 2008; Atarashi et al., 2008). Indeed, Th17 cells

were essentially absent from that site in GF K/BxN animals

(Figure 5A). (In contrast, IL-17-expressing SI-LP CCR6+ gd

T cells were not reduced in K/BxN GF mice—data not shown.)

Several experiments were performed to explore a potential link

between SI-LP and splenic Th17 cells. First, we compared their

appearance through ontogeny: SI-LP Th17 cells arise abruptly

between day 16 and day 25 after birth, around the time of wean-

ing (Ivanov et al., 2008), which is just before the window of

arthritis development previously reported for the K/BxN model,

i.e., days 25–31 (Kouskoff et al., 1996). A direct temporal

comparison of the relevant parameters in SPF K/BxN mice

revealed that SI-LP Th17 cells appeared in substantial numbers

between 2 and 3 weeks of age (Figure 5B), followed closely by

splenic Th17 cells between 3 and 4 weeks (Figure 5B) and

arthritis onset at around 4 weeks (Figure 5B). Second, we looked
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Figure 3. A Defective Th17 Cell Signature in

GF K/BxN Mice

(A) FC (fold change) versus FC plot comparing

gene-expression values of SPF K/BxN versus

BxN mice (x axis) and GF K/BxN versus BxN

mice (y axis). Gene-expression values of each

group were the average values of three chips

from three independent experiments.

(B) Th cell signatures. Th2, Th1, and Th17 cell

signatures were generated from published data

sets (Nurieva et al., 2008), with 2 as the cut-off

for FC over the expression value of two other cell

types. The volcano plots depict the FC for SPF

versus GF K/BxN CD4+ T cells versus the p value

of the FC. Signature genes are superimposed in

red. Values refer to the number of genes upregu-

lated (right) or downregulated (left) in GF vis-à-vis

SPF T cells. p values from a c2 test are indicated.

(C) IL-4, IFN-g, and IL-17 transcripts in splenic

CD4+ T cells for GF or SPF of B/N or K/BxN mice

were quantified by RT-PCR. The level in SPF

BxN mice was set as 1. Mean + SEM. Results were

compiled from three independent experiments

with two mice per group. p = 0.01 for trans-

criptional fold-induction of IL-17 (SPF versus GF

K/BxN).

(D) Splenocytes of GF or SPF BxN or K/BxN mice

were stained with Abs recognizing CCR6 and IL-17

and were analyzed by flow cytometry. Values

represent percentages of IL-17+CCR6+ cells in

CD3+CD4+B220� cells. Data are representative

of two independent experiments.
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for the gut homing receptor, a4b7, on splenic Th17 cells. Sup-

porting an intestinal origin, 30%–50% of splenic Th17 cells

from 5-week-old K/BxN, but not BxN, mice expressed this

receptor, imprinted by intestinal-mucosa-associated DCs (Fig-

ure 5C; Sigmundsdottir and Butcher, 2008). Last, we compared

the sensitivities of the SI-LP and splenic Th17 cell compartments

and of arthritis development to antibiotic treatments. The differ-

entiation of SI-LP Th17 cells in B6 mice is blocked by ampicillin

and vancomycin but not by metronidazole and neomycin, the

latter two targeting anaerobes and Gram-negative bacteria,

respectively, i.e., >90% of gut microbiota (Ivanov et al., 2008).

This pattern of sensitivity was also true of SI-LP and splenic

Th17 cells in K/BxN mice (Figures 6A and 6B), including those

splenic Th17 cells that expressed a4b7 (e.g., Figure 6C). Most

important, treatment of K/BxN mice from birth with vancomycin

or ampicillin, but not metronidazole or neomycin, strongly in-

hibited the development of arthritis (Figure 6D). Interestingly,
Immunity 32, 815–8
disease was actually exacerbated in the

neomycin-treated animals, suggesting

an additional negative influence of

Gram-negative gut bacteria.

Monocolonization with SFB
Triggers Arthritis in GF K/BxN Mice
It was recently reported that a single

bacterial species that is a component of

normal gut microbiota, SFB was sufficient
to induce the development of SI-LP Th17 cells in mice taken from

an SPF facility at the Jackson Laboratory, wherein they typically

show a dearth of both this bacterium and Th17 cells (Ivanov

et al., 2009). This result drew our attention because we had noted

lower GPI autoAb titers and attenuated arthritis development

when first introducing the K/BxN model into Jackson, vis-à-vis

our SPF colonies in Strasbourg and Boston (data not shown).

Therefore, we tested whether SFB might be arthritogenic by

introducing it, via oral gavage of fecal material from SFB-mono-

colonized mice (versus feces from control mice), into GF K/BxN

mice transferred into an SPF facility at 21 days of age (Figure 7A).

Prior experiments like those illustrated in Figure 1C had demon-

strated that transferred GF mice do develop arthritis, but typi-

cally not until 2 weeks after exposure to SPF conditions, i.e., after

35 days of age. Introduction of SFB greatly accelerated arthritis

onset in the transferred mice, beginning 3 days after gavage, i.e.,

after only 28 days of age (Figure 7B). PCR analysis of fecal
27, June 25, 2010 ª2010 Elsevier Inc. 819
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Figure 4. Reduction of Arthritis by Neutralization of IL-17

(A) 25-day-old SPF K/BxN mice were treated with 100 mg of anti-IL-17 or control rat IgG every 3 days, and ankle thickening was measured over time (left). Mean ±

SEM of the two groups (n = 5 in both groups from two independent experiments is plotted; asterisks indicate statistical significance via the Student’s t test,

*p < 0.05). Sera were collected at the end of the experiment, and anti-GPI titers were quantified (right). Symbols represent individual mice; bar indicates the mean.

(B) At 23 days of age, GF mice were transferred to our SPF facility and were treated with 100 mg anti-IL-17 or control rat IgG every 3 days from day 24. Otherwise

as in (A) (n = 4 in both groups from one experiment; asterisks indicate statistical significance via the Student’s t test, *p < 0.05).

(C) SPF K/BxN mice were treated as in (A). At the end of treatment, splenocytes were isolated and stained with Abs recognizing B220, CD4, or Fas, or with PNA,

and were analyzed by flow cytometry, gating as indicated. Values represent the percentages of Fas+PNA-R+ cells in total B cells. Data are representative of two

independent experiments with two mice per group.

(D) B cells from either WT or Il17ra�/�mice were combined with splenocytes from arthritic K/BxN mice and transferred into BxN.Rag1�/� recipients. The origins

of B cells were identified by expression of the congenic marker: CD45.1+CD45.2+ for K/BxN B cells and CD45.2 for Il17ra�/� or WT B cells. Percentages of K/BxN

B cells and Il17ra�/� or WT B cells among total B cell or GC B cell populations are indicated. The quantitative data of Il17ra�/� or WT B cell percentage among

total B cells and GC B cells were also shown as mean + SEM (n = 4, data combined from two independent experiments).

Immunity

The Gut Microbe SFB Can Trigger Arthritis
material at 6 days after gavage indicated that at this early time

point only those mice administered SFB-containing feces were

colonized with SFB (Figure 7C). Flow cytometry of SI-LP and

spleen cells at 33 days of age confirmed the association between

SFB colonization, the appearance of Th17 cells in SI-LP, their

migration to the spleen (Figures 7D and 7E), and the triggering

of arthritis (Figure 7B). As anticipated, introduction of SFB led

to an elevation of GPI autoAb titers to amounts that are known

to induce arthritis (Figure 7F; cf. Figure 1B). Thus, a single bacte-

rial species, SFB, is capable of triggering arthritis development in

K/BxN mice through promotion of Th17 cell populations in the

SI-LP and spleen, leading to high titers of circulating GPI

autoAbs, the critical disease driver in this model.

DISCUSSION

Recent studies have highlighted a critical role for gut microbiota

(Niess et al., 2008; Atarashi et al., 2008; Ivanov et al., 2008), in
820 Immunity 32, 815–827, June 25, 2010 ª2010 Elsevier Inc.
particular SFB (Salzman et al., 2010; Gaboriau-Routhiau et al.,

2009; Ivanov et al., 2009), in the differentiation of Th17 cells in

the intestinal LP. The data presented herein establish the rele-

vance of these observations for the initiation of autoimmune

disease—in particular, a nongut autoimmune disorder.

SFB are Gram positive, spore-forming obligate anaerobes that

have not yet been successfully cultured in vitro (Klaasen et al.,

1992). Most closely related to Clostridia, and provisionally desig-

nated Candidatus arthromitus (Snel et al., 1995), they are long

and filamentous, comprised of multiple segments with distinct

septa (Klaasen et al., 1992). SFB-like bacteria have been de-

tected morphologically in the ileum of all vertebrate species

studied to date, including Homo sapiens (Klaasen et al.,

1993a). They colonize the gut of mice at weaning (Garland

et al., 1982), when they adhere tightly to epithelial cells of the

ileum (Klaasen et al., 1992). SFB have been known for some

time to interact with the immune system, promoting the develop-

ment of robust LP lymphocyte populations, the secretion of IgA,



0

0.4

0.8

1.2

A
nk

le
 th

ic
ke

ni
ng

 (m
m

)

A B

C BxN K/BxN

SI-LP

Spleen

2 wk 3 wk 4 wk

2.63 8.86 6.66

0.27 0.45 0.92
1.97

3 4 5 

0.08 0.03 0.48 0.31

CCR6

IL
-1

7

CCR6

IL
-1

7

α4β7

IL
-1

7

5 wk

11.75

Age (weeks)

SPF

GF  

7.52

0

Gated on B220-CD3+CD4+

Gated on B220-
CD3+CD4+

K/BxN

K/BxN

Gated on B220-CD3+CD4+

Figure 5. Linking Gut and Spleen IL-17 Cells

(A) SI-LP lymphocytes were isolated from SPF or GF K/BxN mice. Cells were stained, analyzed by flow cytometry, and gated as indicated. Expression of IL-17

versus CCR6 is plotted. The values indicate percentages of IL-17+CCR6+ cells in CD3+CD4+B220� cells. Data are representative of three independent

experiments.

(B) SI-LP lymphocytes (top) and splenocytes (middle) were isolated from SPF mice of the indicated ages, stained, and analyzed by flow cytometry, gated as

indicated. Plots displayed IL-17 versus CCR6 expression. Values indicate percent of IL-17+CCR6+ cells in total CD4+ T cells (CD3+CD4+B220�). Data are

representative of two independent experiments. Bottom: Measurement of ankle thickening for the same mice. Each circle represents one animal from two

independent experiments.
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and the recruitment of intraepithelial lymphocytes (Klaasen et al.,

1993b; Talham et al., 1999; Umesaki et al., 1995). Not surpris-

ingly, then, this bacterial species has been reported to impact

on intestinal immune responsiveness (Stepankova et al., 2007;

Ivanov et al., 2009).

How does SFB promote the development of joint inflammation

in K/BxN mice? K/BxN arthritis relies strongly on IL-17, and the

appearance of IL-17-producing Th cells in both the intestinal

LP and spleen depends critically on gut microbes, in particular

SFB (shown here; Atarashi et al., 2008; Ivanov et al., 2008,

2009; Salzman et al., 2010; Gaboriau-Routhiau et al., 2009;

Niess et al., 2008). We do not rule out the possibility that other

commensals can promote, or can synergize with, SFB in

promoting arthritis in this model, but other species, including

members of the SFB-related Clostridiaceae family, were not

able to induce the accumulation of SI-LP Th17 cells in a previous

set of studies (Ivanov et al., 2009).

An early step in K/BxN disease induction is likely to be activa-

tion of APCs residing in the intestinal LP, as indicated by the fact

that gut microbes can have an indirect adjuvant effect in path-

ogen infections (e.g., Benson et al., 2009). It was recently shown

that ATP produced by gut bacteria drives a unique population

of CD70hiCD11clo colonic LP APCs to produce IL-6, IL-23, and

other factors that favor the differentiation of the Th17 cell subset,
and that ex vivo coculture of these APCs with naive CD4+ T

lymphocytes induces the appearance of Th17 cells (Atarashi

et al., 2008). However, SFB does not appear to operate via ATP

in the SI-LP, instead upregulating the production of acute-phase

isoforms of SAA in the ileum, which can act on DCs from the

SI-LP to induce cocultured naive CD4+ T cells to differentiate

into Th17 cells (Ivanov et al., 2009).

The activation of APCs in the SI-LP should be sufficient to drive

an anti-GPI Th17 cell response in the vicinity and, indeed, 6- to

8-week-old SPF K/BxN mice showed a near doubling of SI-LP

Th17 cells compared with SPF BxN animals (data not shown).

Given that GPI is expressed in all cell types and circulates in

low amounts in the blood and that this is a TCR-transgenic

system with a high frequency of self-reactive T cells, there is

no need to invoke more complicated scenarios entailing molec-

ular mimicry (Harkiolaki et al., 2009) in this context, i.e., the initial

activation of GPI-reactive T cells does not depend on cross-

reactivity to a gut-microbe antigen.

Once generated, GPI-reactive SI-LP Th17 cells are competent

to exit the gut and recirculate (Sigmundsdottir and Butcher,

2008). Gut APCs, in particular the CD103+ subset of intestinal

LP DCs, produce elevated amounts of retinoic acid, which

induces associated T cells to express the gut-homing receptor,

the a4b7 integrin. These ‘‘gut-imprinted’’ T cells recirculate
Immunity 32, 815–827, June 25, 2010 ª2010 Elsevier Inc. 821
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Figure 6. Effects of Various Antibiotics

(A) Representative dot plots examining expression of IL-17 and CCR6 by SI-LP lymphocytes in untreated or the indicated antibiotic-treated SPF K/BxN mice,

treated from birth to 5 weeks of age. Values refer to percent of the gated population in total CD4+ T cells. Representative of two independent experiments.

(B) SPF K/BxN mice were treated with metronidazole (1 g/l), neomycin (1 g/l), vancomycin (0.5 g/l), or ampicillin (1 g/l) in the drinking water from birth. At 5 weeks of

age, SI-LP lymphocytes (left) and splenocytes (right) were isolated, stained, and analyzed by flow cytometry. Plotted are the percent of IL-17+ cells of total CD4+

T cells. Mean + SEM (data were a combination of two independent experiments with mice treated with metronidazole [n = 4], neomycin [n = 4], vacomycin [n = 4],

ampicillin [n = 4], or nothing [n = 8]). Asterisks indicate statistical significance using the Student’s t test, **p < 0.005.

(C) Representative dot plots examining expression of a4b7 on IL-17-producing splenocytes in untreated (left) or vancomycin-treated (right) SPF K/BxN mice,

treated from birth to 5 weeks of age. Values refer to percent of the gated population in total CD4+ T cells. Representative of two independent experiments.

(D) K/BxN mice were untreated or were treated with metronidazole (1 g/l), neomycin (1 g/l), ampicillin (1 g/L), or vancomycin (0.5 g/l) in the drinking water

from birth. Ankle thickening was followed from day 27. Mean ± SEM (none group, n = 5; all other antibiotics-treated groups, n = 4). Asterisks indicate statistical

significance of area under curve with the Student’s t test, **p < 0.005. Representative of two independent experiments.
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through the intestinal lymphatics, enter the bloodstream, and

preferentially home back to the LP. In the K/BxN system, a pop-

ulation of a4b7-expressing Th17 cells was retained in the spleen,

where they are positioned to provide help for the characteristi-

cally massive GPI autoAb response. The alternative explanation

(that CD103+ DCs migrate from the gut to the spleen and induce

a4b7+ Th17 cells) is less likely, given reports that gut DCs gener-

ally do not migrate beyond the mesenteric lymph nodes

(Macpherson and Uhr, 2004; Voedisch et al., 2009). The IL-17

produced by Th17 cells was required for effective GC formation

in K/BxN spleens, which was a direct effect of this cytokine on B

cells. Although IL-17 is not generally thought of as a ‘‘helper’’

cytokine for B cells, our data are reminiscent of findings on

the BXD2 model that argued that this cytokine can act on

B cells by suppressing their chemotactic response to CXCL12

(Hsu et al., 2008).

The generation of high titers of GPI autoAbs is a pivotal event

in the K/BxN model (Korganow et al., 1999). They combine with
822 Immunity 32, 815–827, June 25, 2010 ª2010 Elsevier Inc.
circulating GPI to form immune complexes, which are deposited

along the noncellular joint surface where the cartilage meets

the articular cavity (Matsumoto et al., 2002). Because of the

dearth of inhibitors at this site, the alternative pathway of

complement is activated, leading to the recruitment and activa-

tion of inflammatory leukocytes. As has been discussed at length

(Matsumoto et al., 2002; Binstadt et al., 2006), the joint speci-

ficity of the autoinflammation in the K/BxN model does not result

from joint-specific T or B cell responses, but rather from partic-

ularities of joint structure and physiology. Indeed, it is difficult

to find any anti-GPI T and B cells in the joint itself (Kouskoff

et al., 1996). Although the low titer of anti-GPI in the absence

of SFB suffices in and of itself to explain the dampening of

arthritis observed in GF-housed mice (Matsumoto et al., 1999),

it remains possible that commensal microbes also impact on

downstream disease processes. Indeed, a positive influence of

Th17 cells on the K/BxN serum-transfer system was recently

described (Jacobs et al., 2009).
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Figure 7. Triggering of Arthritis in SFB-Colonized GF K/BxN Mice

(A) Experimental scheme. Mice were shipped from the GF Taconic facility to

the SPF NYU facility on day 21 after birth and arrived the next day. After a

3-day rest, they were gavaged with SFB mono-feces or control GF feces

(the rare animal with already swollen ankles was not used). Ankle thickening

was measured every day from day 27 to day 33.

(B) Measurement of ankle thickness beginning on day 27. n = 9 for SFB-treated

and n = 5 for controls from four independent experiments. Asterisks indicate

statistical significance via the Student’s t test, *p < 0.05.

(C) Quantitative PCR analysis of SFB and total bacterial (EUB) 16S rRNA genes in

mouse feces. GF K/BxN mice were gavaged either with their own feces (C) or with

feces fromSFBmono-colonizedmice (SFB).GenomicDNAwas isolated fromfecal

pellets on day 6 after gavage. Data combined from two separate experiments.
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The influence of microbial commensals on arthritis develop-

ment in other mouse models has been variable, covering the

range from inhibition to little effect to augmentation (Björk

et al., 1994; Chervonsky, 2010). However, the significance of

these studies is difficult to assess because, in general, they relied

on the administration of bacteria or bacterial products (often

Complete Freunds’ Adjuvant) for the induction of disease. Our

findings are conceptually different from the observation that

fungal infection, probably through the lungs and/or skin of

conventionally (compared with SPF-) housed mice, augments

arthritis development in the skg model (Yoshitomi et al., 2005).

Because of the relatively high rate of discordance of human

rheumatoid arthritis (RA) in monozygotic twins, the role of

microbes in this disorder has been of great interest, although

the conclusions have often been contentious (Edwards, 2008).

Most of the attention has been devoted to disease correlations

with infectious microorganisms, resulting in claims of associa-

tion with a number of them, including Mycobacterium tubercu-

losis, Proteus mirabilis, Escherichia coli, Epstein-Barr virus,

retroviruses, etc. However, none of the associations has

emerged as dominating, and mechanistic insights are lacking.

Only of late has some of the focus shifted to the potential influ-

ence of microbial commensals. Vaahtovuo et al. reported

differences in the intestinal microbiota of patients with early

(<6 month duration) RA vis-à-vis controls with fibromyalgia, as

assessed from the 16S rRNA composition of fecal samples

(Vaahtovuo et al., 2008), but it is difficult to distinguish cause

from effect in such a study. Clearly, this is an area that merits

further exploration, which will probably need to partner with

studies on animal models to establish causality, permit mecha-

nistic dissection, and allow preclinical evaluation of suggested

therapeutic strategies. Indeed, antibiotics such as sulfasalazine

and minocyline have been known for some time to have benefi-

cial effects on RA progression, but underlying mechanisms

remain the subject of substantial controversy (Stone et al., 2003).

More generally, commensal microbes can have a variable

influence on different spontaneously developing autoimmune

diseases (Chervonsky, 2010). For example, introduction of

Aire�/� mice into a GF facility had no significant impact on the

severity or scope of the multiorgan autoinflammation that

appears under SPF conditions (Gray et al., 2007). And it is well

known that the penetrance of type-1 diabetes in the NOD mouse

strain increases with cleaner housing conditions, rising to 100%

in GF facilities (Pozzilli et al., 1993). It is tempting to speculate

that these divergent effects might, at least in part, reflect the

various diseases’ differential dependence on particular Th

subsets. In this regard, it may be relevant that for neither of these
(D) SI-LP lymphocytes were isolated from control or SFB-inoculated K/BxN

mice. Cells were stained and analyzed by flow cytometry. Expression of

IL-17 versus IFN-g is plotted. Values refer to percent of the gated population

in total CD4+TCRb+ cells.

(E) Splenocytes were isolated from control or SFB-inoculated K/BxN mice and

were stained and analyzed by flow cytometry, gated as indicated. Plots depict

IL-17 versus a4b7 staining. Values indicate percent of IL-17+a4b7+ or

IL-17+a4b7� cells in total CD4+ T cells (B220� CD3+CD4+). Data are represen-

tative of two independent experiments.

(F) Sera were collected from control or SFB-inoculated K/BxN animals at the

end of the experiment depicted in (A). The bar indicates the mean. Asterisks

indicate statistical significance via the Student’s t test, *p < 0.05.
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diseases has there emerged definitive evidence of a critical role

for Th17 cells (Devoss et al., 2008; Martin-Orozco et al., 2009;

Bending et al., 2009; Emamaullee et al., 2009).
EXPERIMENTAL PROCEDURES

Mice

K/BxN mice were generated by crossing KRN TCR transgenic mice on the B6

background (KRN/B6) (Kouskoff et al., 1996) with NOD mice in an SPF facility

at the Harvard School of Public Health. Pups from KRN/B6 and NOD-back-

ground lines were rederived by cesarean section into the GF facility at Taconic

Farms (Hudson, NY). Individuals from the two lines were crossed to generate

K/BxN experimental animals. All GF mice were given sterilized food (NIH 31M)

and water and were tested weekly to establish that they were free of aerobic

and anaerobic bacteria, parasites, and fungi. Sentinel mice were also tested

routinely and found to be negative for viral serologies. A complete list of

excluded organisms is available on request. Mice were shipped in GF

containers by Taconic to Boston or New York for measuring arthritis and

obtaining experimental organs for analysis. Rag1�/� mice on the B6xNOD

background (BxN Rag�/�) were obtained from our colony at the Jackson Labo-

ratory. Il17ra�/�mice (Ye et al., 2001) were obtained from Amgen Washington

and were bred with B6g7 mice at our animal facility at the Harvard School of

Public Health. ifng-deficient mice on the B6 genetic background were

purchased from the Jackson Laboratory (Dalton et al., 1993), and appropriate

crosses were performed to yield K/BxN mice homozygous or heterozygous for

the Ifng null mutation.

IL-17 was neutralized by treatment with a mAb recognizing it (MAB421, R&D

Systems). Control Abs were purified polyclonal rat IgG (Jackson Immunore-

search).

For antibiotic treatment, 1 g/L of ampicillin sodium salt (Sigma), 1 g/L of

metronidazole (Acros Organics), 0.5 g/L vancomycin hydrochloride (Acros

Organics), or 1 g/l of neomycin (Fisher BioReagents) were used as previously

described (Atarashi et al., 2008). Antibiotics were added to the drinking water

on a weekly basis. Sweetener (Equal) was added to the water (2.5 g/L). For the

treatment of neonates, antibiotic-supplemented water was provided to

lactating mothers.

Ankle thickness was measured with a caliper (J15 Blet micrometer) as

described previously (Wu et al., 2007). Mice were maintained at the Harvard

Medical School facility unless otherwise mentioned. All experiments were

done with protocols approved by Harvard Medical School’s Institutional

Animal Care and Use Committee.
ELISAs

Anti-GPI Ab titers were measured as described (Matsumoto et al., 1999). In

brief, ELISA plates were coated with recombinant mouse GPI at 5 mg/ml,

and diluted mouse sera was added. Subsequently, alkaline-phosphatase

(AP)-conjugated anti-mouse IgG, IgG1, or IgG2a followed by AP-conjugated

streptavidin were applied. After substrate addition, titers were quantified as

optical density (OD) values via an ELISA reader.
Flow Cytometry

Cells were collected for flow cytometry by filtering crushed spleen or thymus

through a 40 mm nylon membrane. For surface staining, fluorophore-labeled

mAbs specific for CD4, CD8, CD3, CD25, CD44, Fas, CD19, IgM, IgD,

CD21, CD23, CXCR5, PD-1, CD45.1, or CD45.2 were obtained from BD

PharMingen. Anti-a4b7 and anti-CCR6 were from Biolegend. PNA-R was

from Vector Laboratories. For intracellular cytokine staining, immediately after

isolation, the cells were incubated for 4 hr with 50 ng/ml phorbol 12-myristate

13-acetate (Sigma), 1 mM ionomycin (Sigma), and BD GolgiPlug (1:1000

dilution) at 37�C. Intracellular cytokine staining was performed with Cytofix/

Cytoperm (BD PharMingen) per the manufacturer’s instructions. Abs recog-

nizing IL-17 and IFN-g were obtained from Biolegend and BD PharMingen,

respectively. Foxp3 staining, Foxp3 Staining Buffer Set was obtained from

eBioscience, and intracellular staining was performed according to the

manufacturer’s instructions. Cells were run on an LSRII (BD Biosciences),

and analysis was performed with FloJo (TreeStar) software.
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ELISPOT Assay

ELISPOT assays were performed with Multiscreen IP Plates (Millipore). The

plates were prewet with 15 ml of 35% ethanol (v/v in Milli-Q water) for 1 min,

rinsed with 150 ml sterile phosphate-buffered saline (PBS) three times, coated

with 100 ml (10 mg/ml) recombinant GPI (Matsumoto et al., 2002) in sterile PBS,

and incubated overnight at 4�C. The next day, plates were washed with Milli-Q

water and blocked with 150 ml per well of tissue-culture medium (RPMI-1640,

10% fetal bovine serum, 1% nonessential amino acids, penicillin, strepto-

mycin, glutamine) for 2 hr at 37�C. B cells from BxN or K/BxN mice were

positively isolated with directly conjugated MACS beads (Miltenyi Biotec)

according to the manufacturer’s instructions. Cells were resupended at 2.5 3

106 cells/ml in medium, and 100 ml of cell suspension was added into the wells.

Cells were serially diluted and incubated for 6 hr at 37�C. After washing, alkaline

phosphatase-conjugated anti-mouse total IgG was applied, and the plates

were incubated for 2 hr at 37�C. Plates were then washed, and 1 step NBT/

BCIP substrate (Pierce) was added. Spots were developed during 5 min of

incubation at room temperature. The plates were rinsed with water, dried

overnight in the dark, and analyzed with the CTL-ImmunoSpot UV Analyzer.

T Cell Proliferation and T Cell Suppression Assays

For T cell proliferation assays, total splenocytes (2 3 105) in tissue-culture

medium were added to 96-well plates. GPI peptide (GPI282-294) was added to

the culture at various concentrations as indicated in the relevant figure. After

2 days of culture, 1 mCi of 3H-thymidine was added to each well, the plates

were incubated overnight, and cells were harvested and the radioactivity deter-

mined by a beta counter. For T cell suppression assays, responder T cells

(CD4+CD25�) were sorted from spleens of SPF K/BxN mice and Treg cells

(CD4+CD25+) were sorted from spleens of either GF or SPF K/BxN mice.

Responder T cells were stimulated with anti-CD3/CD28 beads (Dynabeads,

Invitrogen) and cultured in complete medium at a density of 2.5 3 104–5.0 3

104 cells/well, either alone or with various concentrations of Treg cells for

3 days. 3H-thymidine incorporation was examined as described above.

Gene-Expression Analyses

RNA was prepared as described (Hill et al., 2008). For microarray analysis,

RNA was labeled and hybridized to GeneChip Mouse Genome 430 2.0 arrays

according to the Affymetrix protocols. GF or SPF splenic CD3+CD4+ T cells

from BxN or K/BxN mice were isolated via MoFlo sorting (DakoCytomation).

Data were analyzed with Multiplot software. The Th1, Th2, and Th17 cell signa-

tures were derived from the data of Dong and collaborators (Nurieva et al.,

2008), each signature generated with 2 as an arbitrary FC cut-off over the

expression value of the other two cell types.

RNA was isolated from splenocytes via Trizol (6756) and was reverse

transcribed with oligo dT priming and Superscript polymerase (Invitrogen).

Quantitative RT-PCR was performed on an Mx3000p instrument (Stratagene),

with gene-specific fluorogenic assays (TaqMan, Applied Biosystems).

Forward primers (FPs) and reverse primers (RPs) were from MWG Biotech,

and probes for IL-4 and IFN-g were ordered from Applied Biosystems. IL-4

(FP, TCCTCACAGCAACGAAGAACAC; RP, CAAGCATGGAGTTTTCCCATG;

probe, TGTAGGGCTTCCAAGGTGCTTCGCATATT), IFN-g (FP, CAGCAACAG

CAAGGCGAAA; RP, CTGGACCTGTGGGTTGTTGAC; probe, TCAAACTTGG

CAATACTCATGAATGCATCCT). For IL-17A, a 10 ml final reaction mix contain-

ing TaqMan Universal PCR Master Mix (Applied Biosystems) and IL-17A

TaqMan Gene Expression Assays (Mm00439619_m1) were used. Cytokine

transcripts in spleens were quantified by RT-PCR with hypoxanthine guanine

phosphoribosyl transferase mRNA as an internal standard.

Cell Transfers

B cells were positively purified on B220-conjugated MACS beads from

B6g7.Il17ra�/�mice or WT B6g7 littermate controls. B cells (1 3 107) from either

WT or Il17ra�/�mice were combined with splenocytes (1.2 3 107) from arthritic

K/BxN mice and were transferred into lightly irradiated (450R) BxN.Rag1�/�

recipients. Recipient mouse splenocytes were isolated after 2 weeks for flow

cytometric analyses of B cell reconstitution.

SI-LP Cell Isolation and Analysis

SI-LP were isolated as described, with some modification (Ivanov et al., 2006;

Atarashi et al., 2008). In brief, the SI was taken, residual mesenteric fat tissue
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was removed, Peyer’s patches were carefully excised, and the intestine was

opened longitudinally. It was then thoroughly washed in ice-cold PBS and

cut into 1 cm pieces, which were incubated twice in 25 ml of 5 mM ethylene-

diaminetetraacetic acid (EDTA) and 0.145 mg/ml DL-Dithiothreitol (DTT) in

Dulbecco’s Modified Eagle Medium (DMEM) for 40 min at 37�C at a rotation

speed of 200 rpm. After incubation, the epithelial cell layer, containing the

intraepithelial lymphocytes, was removed by intensive vortexing and passing

through a 100 mm cell strainer. After the second EDTA incubation, the bits

were washed in PBS, cut into 1 mm2 pieces with scissors, and placed in

15 ml digestion solution containing 1 mg/ml each of Collagenase D (Roche)

and 0.15 mg/ml DNase I (Sigma), and 200 ng/ml liberase Cl (Roche). Digestion

was performed by incubating the pieces at 37�C for 20 min with rotation. After

the initial 20 min, the solution was vortexed intensely and passed through a

100 mm cell strainer. The supernatants were passed through a 40 mm cell

strainer and the cells were resuspended in 10% DMEM medium for stimulation.

Microbiota Reconstitution

For inoculation of GF mice with SFB, fecal pellets were collected from SFB-

monocolonized mice with sterilized test tubes in the vinyl-isolator and were

preserved frozen under dry ice until immediately before oral administration.

Colonizations were performed by oral gavage with 300–400 ml of suspension

obtained by homogenizing the fecal pellets in water. Control mice were gav-

aged with homogenates prepared from their own feces. Mice were maintained

in the Skirball Institute Animal Facility. All experiments were done in accor-

dance with a protocol approved by the Institutional Animal Care and Use

Committee of the New York University School of Medicine.

16S rRNA Gene Quantitative PCR Analysis

Bacterial genomic DNA was extracted from fresh or frozen fecal samples

(within an experiment the samples were treated identically) by phenol-chloro-

form extraction as previously described (Ivanov et al., 2009).

Statistical Analysis

Asterisks indicate statistical significance. Differences were considered signif-

icant at p < 0.05 by the Student’s t test (two-tailed, unpaired). Where indicated,

p values from chi-square (c2) tests were used instead. The area under the

curve (AUC) was calculated for each animal in an experimental set followed

by a Student’s t test between groups (Prism 5; Graph-Pad Software, San

Diego, CA).
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Bäckhed, F., Ley, R.E., Sonnenburg, J.L., Peterson, D.A., and Gordon, J.I.

(2005). Host-bacterial mutualism in the human intestine. Science 307,

1915–1920.

Bending, D., De La Peña, H., Veldhoen, M., Phillips, J.M., Uyttenhove, C.,

Stockinger, B., and Cooke, A. (2009). Highly purified Th17 cells from

BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice.

J. Clin. Invest. 119, 565–572.

Benson, A., Pifer, R., Behrendt, C.L., Hooper, L.V., and Yarovinsky, F. (2009).

Gut commensal bacteria direct a protective immune response against

Toxoplasma gondii. Cell Host Microbe 6, 187–196.

Binstadt, B.A., Patel, P.R., Alencar, H., Nigrovic, P.A., Lee, D.M., Mahmood,

U., Weissleder, R., Mathis, D., and Benoist, C. (2006). Particularities of

the vasculature can promote the organ specificity of autoimmune attack.

Nat. Immunol. 7, 284–292.

Björk, J., Kleinau, S., Midtvedt, T., Klareskog, L., and Smedegård, G. (1994).
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